函数零点的求法
展开全部
1、确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε。
2、求区间(a,b)的中点x1。
3、计算f(x1),若f(x1)=0,则x1就是函数的零点。
函数零点,就是当f(x)=0时对应的自变量x的值,需要注意的是零点是一个数值,而不是一个点,是函数与X轴交点的横坐标。对于函数y=f(x)(x∈R),我们把方程f(x)=0的实数根x叫作函数y=f(x)(x∈R)的零点。即函数的零点就是使函数值为0的自变量的值。函数的零点不是一个点,而是一个实数。
结论:若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号不同,即f(a)·f(b)≤0,则在区间[a,b]内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间[a,b]内至少有一个实数解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询