求积分∫x^3/(1-x^2) dx 求详细过程?

 我来答
机器1718
2022-10-08 · TA获得超过6827个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:160万
展开全部
x³/(1-x²)
=(x³-x+x)/(1-x²)
=-x+x/(1+x)(1-x)
=-x+1/2[1/(1-x)-1/(1+x)]
所以原式=-x²/2+1/2*ln|(1-x)/(1+x)|+C,3,
爱上哭泣的沙漠 举报
这是我步骤里的一个。 原题是求根号下x除以1-3次根号下x 的积分 您能看下不、 x^1/2/(1-x^1/3)dx 这个和那个不是一样么 可是答案最后是-6/7x^7/6开头 ^是次方的意思 这不一样的 采纳我,重新问,令x=sint,dx=costdt.
原式=∫sin^3t/costdt=∫-(1-cos^2t)dcost/cost=-Incost+cos^2t/2+c
cost=√(1-x^2)
带入可得:-In√(1-x^2)+(1-x^2)/2+c,0,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式