log(a)b的值是多少?
1个回答
展开全部
log的乘法一般都用换底公式来解决:
log(a)b=log(s)b/log(s)a(括号里的是底数)。
例如:log(2)3*log(3)4=log(2)3*log(2)4/log(2)3=log(2)4=2。
log(a)b=log(s)b/log(s)a(括号里的是底数)的推导过程:
设log(s)b=M,log(s)a =N,log(a)b=R
则s^M=b,s^N=a,a^R=b
即(s^N)^R=a^R=b
s^(NR)=b
所以M=NR,即R=M/N,log(a)b=log(s)b/log(s)a。
扩展资料:
对数的加减乘除运算规则:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N)
4、log(a)(M÷N)=log(a)(M)-log(a)(N)
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)
参考资料:百度百科-对数公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询