第九题和第十题怎么做?求过程!! 20
1个回答
展开全部
9、令x=2sinu,则:sinu=x/2,u=arcsin(x/2),dx=(1/2)cosudu.
代入得:
∫[√(4-x^2)/x^2]dx
=∫[cosu/(sinu)^2]cosudu
=∫[(cosu)^2/(sinu)^2]du
=∫{[1-(sinu)^2]/(sinu)^2}du
=∫[1/(sinu)^2]du-∫du
=-cotu-u+C
=-cosu/sinu-arcsin(x/2)+C
=-√[1-(sinu)^2]/(x/2)-arcsin(x/2)+C
=-√[1-(x/2)^2]/(x/2)-arcsin(x/2)+C
=-√(4-x^2)/x-arcsin(x/2)+C.
10、设根号(e^x-1) =t
t^2 +1=e^x
x=ln(t^2 +1)
代入得 :
∫t dln(t^2 +1)
=∫2t^2/(t^2 +1) dt
=2*∫t^2/(t^2 +1) dt
=2*∫(t^2 +1-1)/(t^2 +1) dt
=2*∫[1 -1/(t^2 +1)] dt
=2*[∫1 dt -∫1/(t^2 +1) dt
=2*(t -arctant) +C(常数)
=2*【(e^x-1) -arctan(e^x-1)】+C
=2*【e^x -arctan(e^x-1)】+C(常数都归纳到C)
代入得:
∫[√(4-x^2)/x^2]dx
=∫[cosu/(sinu)^2]cosudu
=∫[(cosu)^2/(sinu)^2]du
=∫{[1-(sinu)^2]/(sinu)^2}du
=∫[1/(sinu)^2]du-∫du
=-cotu-u+C
=-cosu/sinu-arcsin(x/2)+C
=-√[1-(sinu)^2]/(x/2)-arcsin(x/2)+C
=-√[1-(x/2)^2]/(x/2)-arcsin(x/2)+C
=-√(4-x^2)/x-arcsin(x/2)+C.
10、设根号(e^x-1) =t
t^2 +1=e^x
x=ln(t^2 +1)
代入得 :
∫t dln(t^2 +1)
=∫2t^2/(t^2 +1) dt
=2*∫t^2/(t^2 +1) dt
=2*∫(t^2 +1-1)/(t^2 +1) dt
=2*∫[1 -1/(t^2 +1)] dt
=2*[∫1 dt -∫1/(t^2 +1) dt
=2*(t -arctant) +C(常数)
=2*【(e^x-1) -arctan(e^x-1)】+C
=2*【e^x -arctan(e^x-1)】+C(常数都归纳到C)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询