三角函数求导公式推导
1个回答
展开全部
三角函数求导公式推导过程如下:
设f(x)=sinx;(f(x+dx)-f(x))/dx=(sin(x+dx-sinx)/dx=(sinxcosdx+sindxcosx-sinx)/dx因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=sindxcosx/dx根据重要极限sinx/x在x趋近于0时等于一,(f(x+dx)-f(x))/dx=cosx,即sinx的导函数为cosx。
同理可得,设f(x)=cos(f(x+dx)-f(x))/dx=(cos(x+dx)-cosx)/dx=(cosxcosdx-sinxsindx-sinx)/dx,因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=-sindxsinx/dx,根据重要极限sinx/x在x趋近于0时等于一(f(x+dx)-f(x))/dx=-sinx即cosx的导函数为-sinx。
注:不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询