高二二次函数二阶导数是什么意思?
1个回答
展开全部
所谓二阶导数,即原函数导数的导数,将原函数进行二次求导。
例如:y=x^2的导数为y=2x,二阶导数即y=2x的导数为y=2。
二阶导数的几何意义
意义如下:
(1)切线斜率变化的速度
(2)函数的凹凸性。
关于你的补充:
二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率。在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的。
应用:
如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,俯弧碘旧鄢搅碉些冬氓那么对于区间I上的任意x,y,总有:
f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。
几何的直观解释:如果如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。
例如:y=x^2的导数为y=2x,二阶导数即y=2x的导数为y=2。
二阶导数的几何意义
意义如下:
(1)切线斜率变化的速度
(2)函数的凹凸性。
关于你的补充:
二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率。在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的。
应用:
如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,俯弧碘旧鄢搅碉些冬氓那么对于区间I上的任意x,y,总有:
f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。
几何的直观解释:如果如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询