设f(x)在区间[a,b]上具有二阶导数,且f'(a)f'(b)>0试证明?
1个回答
展开全部
此立论正确吗?
举例:f(x)=x²,f(x)在区间[1,2]上有二阶导数,且f'(1)f'(2)>0,但在给定区间内不存在c点能使f(c)=0,也不存在d点使f''(d)=0;,1,题目不对,
例如取y=x^4
a=1 b=2,2,设f(x)在区间[a,b]上具有二阶导数,且f'(a)f'(b)>0试证明
1.至少存在一点c,使f(c)=0 2.至少存在一点d,使f"(d)=0 c,d在区间内
举例:f(x)=x²,f(x)在区间[1,2]上有二阶导数,且f'(1)f'(2)>0,但在给定区间内不存在c点能使f(c)=0,也不存在d点使f''(d)=0;,1,题目不对,
例如取y=x^4
a=1 b=2,2,设f(x)在区间[a,b]上具有二阶导数,且f'(a)f'(b)>0试证明
1.至少存在一点c,使f(c)=0 2.至少存在一点d,使f"(d)=0 c,d在区间内
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询