圆心到坐标原点距离公式
展开全部
设A(x1,y1)为某点,B(x2,y2)为圆心,则点到圆心距离公式:
点和圆位置关系:
1、P在圆O外,则 PO>r。
2、P在圆O上,则 PO=r。
3、P在圆O内,则 PO<r。 p=""> </r。>
反之亦然。
平面内,点P(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系判断一般方法是:
1、如果(x0-a)2+(y0-b)2<r2,则p在圆内。 p=""> </r2,则p在圆内。>
2、如果(x0-a)2+(y0-b)2=r2,则P在圆上。
3、如果(x0-a)2+(y0-b)2>r2,则P在圆外。
扩展资料:
直线和圆位置关系:
1、直线和圆无公共点,称相离。 AB与圆O相离,d>r。
2、直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d<r。 p=""> </r。>
3、直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个公共点叫做切点。圆心与切点的连线垂直于切线。AB与⊙O相切,d=r。(d为圆心到直线的距离)
圆和圆位置关系:
1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。
2、有公共点的,一圆在另一圆之外叫外切,在之内叫内切。
3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P>R+r;外切P=R+r;内含0<p<r-r; p=""> </p<r-r;>
内切P=R-r;相交R-r<p<r+r。 p=""> </p<r+r。>
点和圆位置关系:
1、P在圆O外,则 PO>r。
2、P在圆O上,则 PO=r。
3、P在圆O内,则 PO<r。 p=""> </r。>
反之亦然。
平面内,点P(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系判断一般方法是:
1、如果(x0-a)2+(y0-b)2<r2,则p在圆内。 p=""> </r2,则p在圆内。>
2、如果(x0-a)2+(y0-b)2=r2,则P在圆上。
3、如果(x0-a)2+(y0-b)2>r2,则P在圆外。
扩展资料:
直线和圆位置关系:
1、直线和圆无公共点,称相离。 AB与圆O相离,d>r。
2、直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d<r。 p=""> </r。>
3、直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个公共点叫做切点。圆心与切点的连线垂直于切线。AB与⊙O相切,d=r。(d为圆心到直线的距离)
圆和圆位置关系:
1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。
2、有公共点的,一圆在另一圆之外叫外切,在之内叫内切。
3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P>R+r;外切P=R+r;内含0<p<r-r; p=""> </p<r-r;>
内切P=R-r;相交R-r<p<r+r。 p=""> </p<r+r。>
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询