利用因式分解法探究(1-1/2^2)(1-1/3^2)(1-1/4^2)...(1-1/n^2)的值.
利用因式分解法探究(1-1/2^2)(1-1/3^2)(1-1/4^2)...(1-1/n^2)的值....
利用因式分解法探究(1-1/2^2)(1-1/3^2)(1-1/4^2)...(1-1/n^2)的值.
展开
6个回答
展开全部
8(x-1)^3+27=0
(x-1)^3=-27/8=(-3/2)^3
x-1=-3/2
x=-1/24x²=(2x)²
196=(±14)²
设(2x±14)²
=4x²±56x+196
=4x²+mx+196
所以m=±56
(x-1)^3=-27/8=(-3/2)^3
x-1=-3/2
x=-1/24x²=(2x)²
196=(±14)²
设(2x±14)²
=4x²±56x+196
=4x²+mx+196
所以m=±56
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1-1/2²)(1-1/3²)(1-/4²)...(1-1/n²)
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4) *......*(1-1/n)(1+1/n)
= 1/2*3/2*2/3*4/3*3/4*5/4*......*(n-1)/n*(n+1)/n
= 1/2*(n+1)/n
= (n+1)/(2n)
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4) *......*(1-1/n)(1+1/n)
= 1/2*3/2*2/3*4/3*3/4*5/4*......*(n-1)/n*(n+1)/n
= 1/2*(n+1)/n
= (n+1)/(2n)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1-1/2²)(1-1/3²)(1-/4²)...(1-1/n²)
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4) *......*(1-1/n)(1+1/n)
= 1/2*3/2*2/3*4/3*3/4*5/4*......*(n-1)/n*(n+1)/n
= 1/2*(n+1)/n
= (n+1)/(2n)
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4) *......*(1-1/n)(1+1/n)
= 1/2*3/2*2/3*4/3*3/4*5/4*......*(n-1)/n*(n+1)/n
= 1/2*(n+1)/n
= (n+1)/(2n)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式==(1-1/2)(1+1/2)(1-1/3)(1+1/3)……(1-1/n)(1+1/n)
=(1/2)(3/2)(2/3)(4/3)……((n-1)/n*(n+1)/n)
中间约分
=(1/2)((n+1)/n
=(n+1)/(2n)
=(1/2)(3/2)(2/3)(4/3)……((n-1)/n*(n+1)/n)
中间约分
=(1/2)((n+1)/n
=(n+1)/(2n)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
n+1/2n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询