哪些原理会影响三维重建的图像质量
4个回答
2022-05-04
展开全部
三维重建基于所谓的三角原理。对于已经定标的两幅图像(即已知相机的内部参数和外部参数),假设在两幅图像上,对应点是一对(也就是说是同一点场景物体表面的投影),则基于两幅图像的投影中心,两条直线经过该一对对应点,最终在空间中汇聚于一点,如此,就提供了场景物体表面中某点的三维立体坐标。
将两幅图像作为例子,指定在同一世界坐标系下这两幅图像的相机矩阵P和P', 是两幅图像的一个对应点,即它们满足对极几何约束,现在要根据P和P'计算点对应的空间点。m的反投影线与的反投影线 确定了通过两相机光心的平面一张,不平行的两条射线,必在空间一点交汇。也即对应点的反投影射线,及其两个相机的基线,是一个三角形,相机的光心和反投影线的交点作为其顶点,要确定的空间点就是交点,如图4.1 所示。
图4.1 三维重建原理
有一种例外情况是,三维空间中,分布在两个相机基线上的点,对应点不会完成它的恢复任务,这是由于该情况下,反投影的两条射线重合了基线,故不能唯一确定空间点。
4.2 MVSNet
MVS是一种从具有一定重叠度的多视图视角中恢复场景的稠密结构的技术,传统方法利用几何、光学一致性构造匹配代价,进行匹配代价累积,再估计深度值。虽然传统方法有较高的深度估计精度,但由于存在缺少纹理或者光照条件剧烈变化的场景中的错误匹配,传统方法的深度估计完整度还有很大的提升空间。近年来卷积神经网络已经成功被应用在特征匹配上,提升了立体匹配的精度。在这样的背景下,香港科技大学Yaoyao等人,在2018年提出了一种基于深度学习的端到端深度估计框架——MVSNet。
多视图立体匹配(Multi-view Stereo, MVS)是计算机领域中一个核心问题。重建多视图立体匹配,可以认为是拍摄既定场景的一个逆过程。相机映射下,三维场景变换为二维,而多视图立体匹配重建正好相反,其从这样子。不同视点拍摄图像,恢复出真实的三维场景。
传统的方法使用手工设计的相似性度量指标和正则化方法计算场景的稠密对应关系(比如使用归一化互相关Normalized Cross-Correlation和半全局匹配semi-global matching)。这些方法在非朗伯体表面、无弱纹理区域的场景可以达到很好的效果。但是在弱纹理区域,人工设计的相似性指标变得不可信,因此导致重建结果不完整。由MVS数据集的排行榜可知,这些方法具有很高的精度,然而在重建的完整度方法还有很大的空间可以提升。
卷积神经网络的研究的最新进展引发了人们完善立体匹配重建热情。从概念看,基于学习算法能够捕获全局的语义信息,比如基于高光和反射的先验条件,便于得到更加稳健的匹配。目前已经探求一些两视图立体匹配,用神经网络替换手工设计的相似性度量或正则化方法。这些方法展现出更好的结果,并且逐步超过立体匹配领域的传统方法。事实上,立体匹配任务完全适合使用CNN,因为图像对是已经过修正过的,因此立体匹配问题转化为水平方向上逐像素的视差估计。
将两幅图像作为例子,指定在同一世界坐标系下这两幅图像的相机矩阵P和P', 是两幅图像的一个对应点,即它们满足对极几何约束,现在要根据P和P'计算点对应的空间点。m的反投影线与的反投影线 确定了通过两相机光心的平面一张,不平行的两条射线,必在空间一点交汇。也即对应点的反投影射线,及其两个相机的基线,是一个三角形,相机的光心和反投影线的交点作为其顶点,要确定的空间点就是交点,如图4.1 所示。
图4.1 三维重建原理
有一种例外情况是,三维空间中,分布在两个相机基线上的点,对应点不会完成它的恢复任务,这是由于该情况下,反投影的两条射线重合了基线,故不能唯一确定空间点。
4.2 MVSNet
MVS是一种从具有一定重叠度的多视图视角中恢复场景的稠密结构的技术,传统方法利用几何、光学一致性构造匹配代价,进行匹配代价累积,再估计深度值。虽然传统方法有较高的深度估计精度,但由于存在缺少纹理或者光照条件剧烈变化的场景中的错误匹配,传统方法的深度估计完整度还有很大的提升空间。近年来卷积神经网络已经成功被应用在特征匹配上,提升了立体匹配的精度。在这样的背景下,香港科技大学Yaoyao等人,在2018年提出了一种基于深度学习的端到端深度估计框架——MVSNet。
多视图立体匹配(Multi-view Stereo, MVS)是计算机领域中一个核心问题。重建多视图立体匹配,可以认为是拍摄既定场景的一个逆过程。相机映射下,三维场景变换为二维,而多视图立体匹配重建正好相反,其从这样子。不同视点拍摄图像,恢复出真实的三维场景。
传统的方法使用手工设计的相似性度量指标和正则化方法计算场景的稠密对应关系(比如使用归一化互相关Normalized Cross-Correlation和半全局匹配semi-global matching)。这些方法在非朗伯体表面、无弱纹理区域的场景可以达到很好的效果。但是在弱纹理区域,人工设计的相似性指标变得不可信,因此导致重建结果不完整。由MVS数据集的排行榜可知,这些方法具有很高的精度,然而在重建的完整度方法还有很大的空间可以提升。
卷积神经网络的研究的最新进展引发了人们完善立体匹配重建热情。从概念看,基于学习算法能够捕获全局的语义信息,比如基于高光和反射的先验条件,便于得到更加稳健的匹配。目前已经探求一些两视图立体匹配,用神经网络替换手工设计的相似性度量或正则化方法。这些方法展现出更好的结果,并且逐步超过立体匹配领域的传统方法。事实上,立体匹配任务完全适合使用CNN,因为图像对是已经过修正过的,因此立体匹配问题转化为水平方向上逐像素的视差估计。
展开全部
螺旋CT的重建间隔、探测器位姿会影响三维重建的图像质量。
1、应尽可能地采用较薄的层厚和适当的螺距进行扫描;
2、薄层、重叠重建轴位图像对提高图像质量是非常有效的;
3、 根据重建的目的采用适当的阈值,并对图像进行多次平滑过滤;4.影响轴位CT图像的因素同样也会影响三维图 像质量。
1、应尽可能地采用较薄的层厚和适当的螺距进行扫描;
2、薄层、重叠重建轴位图像对提高图像质量是非常有效的;
3、 根据重建的目的采用适当的阈值,并对图像进行多次平滑过滤;4.影响轴位CT图像的因素同样也会影响三维图 像质量。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2016-03-29 · 国内知名职业教育培训机构
中公教育
中公教育是大型的多品类职业教育机构。在全国拥有1859个直营网点,覆盖319个地级市。主营业务横跨招录考试培训、学历提升和职业能力培训3大板块,提供超过100个品类的综合职业就业培训服务。
向TA提问
关注
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
哪些原因会影响三维重建的图像质量?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询