已知任意三角形的两边和夹角,怎样用三角函数求出第三边的长度

 我来答
教育小百科达人
推荐于2019-09-06 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:479万
展开全部

两种方法:

一、最简单的,使用三角函数的余弦定理。

c²=a²+b²-2abcosC

依据上述公式,直接求解,即得。

二、勾股定理,以已知的一边为斜边,夹角为直角三角形的一内角,做一直角三角形。求出高及一直角边。结合待求的边,又是一直角三角形,再计算出即可。

扩展资料:

在△ABC中,

sin²A+sin²B-sin²C

=[1-cos(2A)]/2+[1-cos(2B)]/2-[1-cos(2C)]/2(降幂公式

=-[cos(2A)+cos(2B)]/2+1/2+1/2-1/2+[cos(2C)]/2

=-cos(A+B)cos(A-B)+[1+cos(2C)]/2(和差化积)

=-cos(A+B)cos(A-B)+cos²C(降幂公式)

=cosC*cos(A-B)-cosC*cos(A+B)(∠A+∠B=180°-∠C以及诱导公式

=cosC[cos(A-B)- cos(A+B)]

=2cosC*sinA*cinB(和差化积)(由此证明余弦定理角元形式)

判定定理:

若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取减号的值。

①若m(c1,c2)=2,则有两解;

②若m(c1,c2)=1,则有一解;

③若m(c1,c2)=0,则有零解(即无解)。

注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。

白雪忘冬
高粉答主

2019-06-09 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376634

向TA提问 私信TA
展开全部

假设a、b已知,夹角为cosC,c未知边,则c的平方=a的平方+b的平方-2abcosC。

相关公式:

a^2=b^2+c^2-2*b*c*CosA

b^2=a^2+c^2-2*a*c*CosB

c^2=a^2+b^2-2*a*b*CosC

CosC=(a^2+b^2-c^2)/2ab

CosB=(a^2+c^2-b^2)/2ac

CosA=(c^2+b^2-a^2)/2bc

扩展资料

平面几何证法

在任意△ABC中

做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

根据勾股定理可得:

AC²=AD²+DC²

b²=(sinB c)²+(a-cosB c)²

b²=(sinB*c)²+a²-2ac cosB+(cosB)²c²

b²=(sin²B+cos²B) c²-2ac cosB+a²

b²=c²+a²-2ac cosB

cosB=(c²+a²-b²)/2ac

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
啊天文9fb6
推荐于2017-12-16 · TA获得超过2085个赞
知道小有建树答主
回答量:1216
采纳率:83%
帮助的人:313万
展开全部
两种方法

一、最简单的,使用三角函数的余弦定理。
c²=a²+b²-2abcosC
依据上述公式,直接求解,即得。
二、勾股定理,以已知的一边为斜边,夹角为直角三角形的一内角,做一直角三角形。求出高及一直角边。结合待求的边,又是一直角三角形,再计算出即可
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
可靠的王者568

2019-12-22 · TA获得超过4969个赞
知道大有可为答主
回答量:4万
采纳率:62%
帮助的人:2410万
展开全部
一般是化简,代入公式,计算,减去最小值就可以了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式