已知任意三角形的两边和夹角,怎样用三角函数求出第三边的长度
两种方法:
一、最简单的,使用三角函数的余弦定理。
c²=a²+b²-2abcosC
依据上述公式,直接求解,即得。
二、勾股定理,以已知的一边为斜边,夹角为直角三角形的一内角,做一直角三角形。求出高及一直角边。结合待求的边,又是一直角三角形,再计算出即可。
扩展资料:
在△ABC中,
sin²A+sin²B-sin²C
=[1-cos(2A)]/2+[1-cos(2B)]/2-[1-cos(2C)]/2(降幂公式)
=-[cos(2A)+cos(2B)]/2+1/2+1/2-1/2+[cos(2C)]/2
=-cos(A+B)cos(A-B)+[1+cos(2C)]/2(和差化积)
=-cos(A+B)cos(A-B)+cos²C(降幂公式)
=cosC*cos(A-B)-cosC*cos(A+B)(∠A+∠B=180°-∠C以及诱导公式)
=cosC[cos(A-B)- cos(A+B)]
=2cosC*sinA*cinB(和差化积)(由此证明余弦定理角元形式)
判定定理:
若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取减号的值。
①若m(c1,c2)=2,则有两解;
②若m(c1,c2)=1,则有一解;
③若m(c1,c2)=0,则有零解(即无解)。
注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。
假设a、b已知,夹角为cosC,c未知边,则c的平方=a的平方+b的平方-2abcosC。
相关公式:
a^2=b^2+c^2-2*b*c*CosA
b^2=a^2+c^2-2*a*c*CosB
c^2=a^2+b^2-2*a*b*CosC
CosC=(a^2+b^2-c^2)/2ab
CosB=(a^2+c^2-b^2)/2ac
CosA=(c^2+b^2-a^2)/2bc
扩展资料
平面几何证法
在任意△ABC中
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC²=AD²+DC²
b²=(sinB c)²+(a-cosB c)²
b²=(sinB*c)²+a²-2ac cosB+(cosB)²c²
b²=(sin²B+cos²B) c²-2ac cosB+a²
b²=c²+a²-2ac cosB
cosB=(c²+a²-b²)/2ac
一、最简单的,使用三角函数的余弦定理。
c²=a²+b²-2abcosC
依据上述公式,直接求解,即得。
二、勾股定理,以已知的一边为斜边,夹角为直角三角形的一内角,做一直角三角形。求出高及一直角边。结合待求的边,又是一直角三角形,再计算出即可