怎样求出直线的一个对称式?
1个回答
展开全部
对称式由直线上一点和直线的方向向量决定
(1)先求一个交点,将z随便取值解出x和y
不妨令z=0
由x+2y=7
-2x+y=7
解得x=-7/5,y=21/5
所以(-7/5,21/5,0)为直线上一点
(2)求方向向量
因为两已知平面的法向量为(1,2,-1),(-2,1,1)
所求直线的方向向量垂直于2个法向量
由外积可求
方向向量=(1,2,-1)×(-2,1,1)
=
i j k
1 2 -1
-2 1 1
=3i+j+5k
所以直线方向向量为(3,1,5)
因此直线对称式为(x+7/5)/3=(y-21/5)/1=z/5
(1)先求一个交点,将z随便取值解出x和y
不妨令z=0
由x+2y=7
-2x+y=7
解得x=-7/5,y=21/5
所以(-7/5,21/5,0)为直线上一点
(2)求方向向量
因为两已知平面的法向量为(1,2,-1),(-2,1,1)
所求直线的方向向量垂直于2个法向量
由外积可求
方向向量=(1,2,-1)×(-2,1,1)
=
i j k
1 2 -1
-2 1 1
=3i+j+5k
所以直线方向向量为(3,1,5)
因此直线对称式为(x+7/5)/3=(y-21/5)/1=z/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询