第一类曲线积分的奇偶性是什么意思
展开全部
第一类曲面积分和第二类曲面积分利用对称性和奇偶性是不同的。
具体来说,当积分区域对称,而被积函数对某个积分变量是奇函数,那么对于第一类曲面积分结果是零。曲面积分-曲面关于xoy对称,被积函数是奇函数。
那就是上侧曲面积分的两倍。奇函数就是零。原因就是你看你的这个例题,z在下侧是为负表达式(奇函数),同时,考虑下侧的方向,cos伽马为钝角,化为二重积分时取负号。
这样就变成两倍的上侧积分了。偶函数表达式不变,还保留一个符号。注意与三重积分的区别,三重积分不用考虑侧的问题,所以奇零偶倍。
扩展资料
第一类曲面积分定义:
首先空间曲面有一个表达式f(x,y,z)=0关于X,Y,Z三者的关系,再一个f(x,y,z)函数是这个曲面的每一ds密度的一种表示,这不是等式,将x,y,z,带入能得到确切的数。
曲面积分的符号和二重积分很像,我的理解是,曲面积分多了∫∫下面有S并且是ds,二重积分∫∫后面是希腊字母),曲面积分ds是小小的一个面,一个弯曲圆滑的面,二重积分的小小面是平面的很容易变成dxdy。所以曲面积分ds变成dxdy需要一个变形金刚的操作。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询