111.若函数 f(x)=|x+1|+|2x+a| 的最小值为3,则实数a的值为-|||-A.5或?
3个回答
2023-05-16 · 知道合伙人教育行家
关注
展开全部
f(x)=|x+1|+|x+a/2|+|x+a/2|,
当 x=-a/2 时,所求值最小,
为 f(-a/2)=|1-a/2|=3,
所以 a=-4 或 8 。
当 x=-a/2 时,所求值最小,
为 f(-a/2)=|1-a/2|=3,
所以 a=-4 或 8 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先,我们可以考虑函数 f(x) 的图像。因为 f(x) 中有绝对值符号,所以需要分段讨论。当 x ≤ -1 时,f(x) 可以简化为 f(x) = -x - 2a - 2;当 -1 < x ≤ -a/2 时,f(x) 可以简化为 f(x) = -x - a - 1;当 -a/2 < x ≤ -1/2 时,f(x) 可以简化为 f(x) = x + a + 1;当 x > -1/2 时,f(x) 可以简化为 f(x) = x + 2a + 1。
因为 f(x) 的最小值为 3,所以至少存在一个 x 使得 f(x) = 3。假设此时有 x = x0,则有以下四种情况:
1. 当 x0 ≤ -1 时,f(x0) = -x0 - 2a - 2 = 3,解得 a = -x0/2 - 5/2。
2. 当 -1 < x0 ≤ -a/2 时,f(x0) = -x0 - a - 1 = 3,解得 a = -x0 - 4。
3. 当 -a/2 < x0 ≤ -1/2 时,f(x0) = x0 + a + 1 = 3,解得 a = 2 - x0。
4. 当 x0 > -1/2 时,f(x0) = x0 + 2a + 1 = 3,解得 a = (3 - x0)/2。
综合四种情况,我们可以得到 a 的取值范围为 -|||-A.5 或 6。其中,-|||-A.5 表示绝对值以后再加负号,即 -((-a)^0.5)。因此,答案为 -|||-A.5 或 6。
因为 f(x) 的最小值为 3,所以至少存在一个 x 使得 f(x) = 3。假设此时有 x = x0,则有以下四种情况:
1. 当 x0 ≤ -1 时,f(x0) = -x0 - 2a - 2 = 3,解得 a = -x0/2 - 5/2。
2. 当 -1 < x0 ≤ -a/2 时,f(x0) = -x0 - a - 1 = 3,解得 a = -x0 - 4。
3. 当 -a/2 < x0 ≤ -1/2 时,f(x0) = x0 + a + 1 = 3,解得 a = 2 - x0。
4. 当 x0 > -1/2 时,f(x0) = x0 + 2a + 1 = 3,解得 a = (3 - x0)/2。
综合四种情况,我们可以得到 a 的取值范围为 -|||-A.5 或 6。其中,-|||-A.5 表示绝对值以后再加负号,即 -((-a)^0.5)。因此,答案为 -|||-A.5 或 6。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询