已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线。

已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线。(1)当点C、E、F在直线AB的同侧(如图1所示)时,试说明∠BOE=2∠COF(2)当点C与点EF... 已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线。
(1)当点C、E、F在直线AB的同侧(如图1所示)时,试说明∠BOE=2∠COF
(2)当点C与点EF在直线AB的两旁(如图2所示)时,(1)中的结论是否仍然成立?请给出你的结论并说明理由
(3)将图2中的射线OF绕点O顺时针旋转M°(0<M<180),得到射线OD,设∠AOC=N
展开
q5462950
2012-01-29 · TA获得超过11.3万个赞
知道大有可为答主
回答量:5339
采纳率:71%
帮助的人:2124万
展开全部
解:(1)设∠COF=α,则∠EOF=90°-α,
∵OF是∠AOE平分线,
∴∠AOF=90°-α,
∴∠AOC=(90°-α)-α=90°-2α,,
∠BOE=180°-∠COE-∠AOC,
=180°-90°-(90°-2α),
=2α,
即∠BOE=2∠COF;

(2)解:成立,
设∠AOC=β,则∠AOF= (90°-β)/2,
∴∠COF=45°+ β/2= 1/2(90°+β),
∠BOE=180°-∠AOE,
=180°-(90°-β),
=90°+β,
∴∠BOE=2∠COF;
追问
第3问
追答
⑶∠DOE=(210-N/3)°
∠COE=90°,∠AOC=N°
∠AOE=∠COE-∠AOC=90°-N°
①∠BOE=180°-∠AOE=180°-(90°-N°)=90°+N°
②∠BOD=(60-2N/3)°
∵∠BOE+∠DOE+∠BOD=360°
∴∠DOE=360°-∠BOE-∠BOD
=360°-(90°+N°)-(60-2N/3)°=(210-N/3)°
nice汉字
2012-08-08 · TA获得超过2.2万个赞
知道小有建树答主
回答量:989
采纳率:100%
帮助的人:68.9万
展开全部
解:⑴证明:∵OF是∠AOE的平分线
∴∠AOF=∠FOE=½∠AOE
∵∠COF+∠FOE=∠COE=90°
∴∠FOE=90°-∠COF
∵∠AOF+∠FOE+∠BOE=∠AOB=180°
∴∠BOE=180°-2*∠FOE
=180°-2*(90°-∠COF)=2*∠COF 证毕
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式