数学 已知实数a,b,c满足a+b+c=1,a²+b²+c²=3,则abc的最大值是几 5

匿名用户
2012-01-29
展开全部
因a+b+c=1
两边平方,整理可得
a²+b²+c²+2(ab+bc+ca)=1
结合a²+b²+c²=3可得
ab+bc+ca=-1
∴-1=ab+c(a+b)
=ab+c(1-c)
∴ab=c²-c-1
又a+b=1-c
∴由韦达定理可知
a,b是关于x的方程x²+(c-1)x+(c²-c-1)=0的两根。
∴⊿=(c-1)²-4(c²-c-1)≥0
整理可得3c²-2c-5≤0
解得: -1≤c≤5/3
ab=c²-c-1
abc=c³-c²-c
构造函数f(x)=x³-x²-x -1≤x≤5/3
求导,f'(x)=3x²-2x-1=(x-1)(3x+1)
∴f(x)max=max{f(-1/3), f(5/3)}=5/27
∴(abc)max=5/27
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式