抛物线y²=2px(p>0)的动弦AB长为a(a≥2p),求弦AB的中点M到y轴的最短距离。

要求详细解题过程~最好有思路分析~谢啦~(答的好有加分哦~)... 要求详细解题过程~最好有思路分析~谢啦~
(答的好有加分哦~)
展开
fnxnmn
2012-01-29 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:7115万
展开全部
抛物线y²=2px(p>0)的动弦AB长为a(a≥2p),求弦AB的中点M到y轴的最短距离。
【解】
设中点M的坐标为(x,y) ,A为(x+u,y+v),B为(x-u,y-v),
弦AB的中点M到y轴的距离就是M的横坐标x.
于是
(y+v)^2=2p(x+u),①
(y-v)^2=2p(x-u),②
(2u)^2+(2v)^2=a^2,③
①-②得:yv=pu,
u= yv/p,代入③可得:4 y^2v^2/p^2+4v^2=a^2,
所以v^2= (a^2 p^2)/( 4 y^2+ 4p^2),④

①+②得:y^2+v^2=2px,
将④代入上式可得:
y^2+(a^2 p^2)/( 4 y^2+ 4p^2) =2px,
所以x= y^2/(2p)+ (a^2 p^2)/[2p( 4 y^2+ 4p^2)]
= y^2/(2p)+ (p a^2 /8)/ ( y^2+ p^2)
= ( y^2+ p^2) /(2p)- p^2 /(2p) + (p a^2 /8)/ ( y^2+ p^2)
= ( y^2+ p^2) /(2p) + (p a^2 /8)/ ( y^2+ p^2)-p/2……利用基本不等式可得下式
≥2√[( y^2+ p^2) /(2p) * (p a^2 /8)/ ( y^2+ p^2)] -p/2
=2*(a/4) -p/2
=a/2-p/2
当且仅当( y^2+ p^2) /(2p) = (p a^2 /8)/ ( y^2+ p^2)时,取到最小值。
此时y^2=pa/2-p^2,
因为a≥2p,所以pa/2-p^2≥0,所以y^2=pa/2-p^2有解,最小值a/2-p/2能够取到。
匿名用户
2012-01-29
展开全部
因为通径长为2p
a≥2p
当2p≥a时
易证AB垂直x轴时距离最小
现假设AB过焦点F,弦AB的中点M到y轴的最短距离即弦AB的中点M到准线的最短距离-p/2=
(Xa+Xb+p)/2-p/2=(a-p)/2
假设AB不过焦点F 则连结AF,BF AF+BF>AB 即M到准线距离小于(Xa+Xb+p)/2-p/2=(a-p)/2
故当且仅当直线AB过抛物线焦点时,有最短距离(a-p)/2
顺便说一下,这是一道竞赛老题,老师讲的时候用解析法做的,貌似没做到底。这是我自己画图时想到的方法,很直观,应该没有错。这是一道十数年不衰的经典好题,有时候数形结合很好用
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xxzgmn
2012-01-29 · TA获得超过5590个赞
知道大有可为答主
回答量:3865
采纳率:72%
帮助的人:1640万
展开全部
平行线之间距离最短,故直线AB平行与y轴时,弦AB的中点M到y轴的最短距离
所以AB点纵坐标 y=±a/2
那么x=y^2/2p=a^2/8p
即弦AB的中点M到y轴的最短距离为a^2/8p
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式