如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°E,F分别为AB,PD的中点,
展开全部
1,在Rt三角形PAD中,∠PDA=45°,所以PA=AD,即AF⊥PD。
因为PA⊥底面ABCD,而CD在底面ABCD内,所以PA⊥CD。
又AD⊥CD,且PA交AD=A,所以CD⊥平面PAD。因为AF在平面PAD内,所以AF⊥CD。
又因为PD交CD=D,所以AF⊥平面PCD。
2,取PC的中点G,连结EG、FG。
在三角形PCD中,FG//CD且FG=CD/2(中位线),所以FG//AE且FG=AE。
即AEGF是平行四边形,即EG//AF。
由(1)知,AF⊥平面PCD,所以EG⊥平面PCD。
因为EG在平面PCE内,所以平面PCE⊥平面PCD。
因为PA⊥底面ABCD,而CD在底面ABCD内,所以PA⊥CD。
又AD⊥CD,且PA交AD=A,所以CD⊥平面PAD。因为AF在平面PAD内,所以AF⊥CD。
又因为PD交CD=D,所以AF⊥平面PCD。
2,取PC的中点G,连结EG、FG。
在三角形PCD中,FG//CD且FG=CD/2(中位线),所以FG//AE且FG=AE。
即AEGF是平行四边形,即EG//AF。
由(1)知,AF⊥平面PCD,所以EG⊥平面PCD。
因为EG在平面PCE内,所以平面PCE⊥平面PCD。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询