幂零矩阵的性质及其应用
展开全部
幂零矩阵的性质及其应用如下:
零矩阵的手写把零写大些就可以。
矩阵大写,变量一般都是小写字母,线性代数里的矩阵不需要加箭头,并没有特别的符号,被声明用于约定手写规范。至于手写的向量,如果用英文字母表示其实应该加箭头,所以考研书里都用希腊字母表示,如ξ、η、γ等,这些不必加箭头。
扩展资料:
零矩阵的性质。
m×n 的零矩阵 O 和 m×n 的任意矩阵 A 的和为 A + O = O + A = A ,差为 A - O = A,O - A = -A。
l×m 的零矩阵 O 和 m×n 的任意矩阵 A 的积 OA 为 l×n 的零矩阵。
l×m 的任意矩阵 B 和 m×n 的零矩阵 O 的积 BO 为 l×n 的零矩阵。
在线性代数中,对于n阶方阵N,存在正整数k,使得N^k=0,这样的方阵N就叫做幂零矩阵。满足条件的最小的正整数k被称为N的度数或指数。更一般来说,零权变换是向量空间的线性变换L,使得对于一些正整数k(并且因此,对于所有j≥k,Lj = 0),L^k= 0。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询