∫√(1+ x^2) dx的原函数怎么求?
1个回答
展开全部
对√(1+x^2)求积分
作三角代换,令x=tant
则∫√(1+x²)dx
=secttant+ln│sect+tant│--∫(sect)^3dt
所以∫(sect)^3dx=1/2(secttant+ln│sect+tant│)+C
从而∫√(1+x^2) dx
=1/2(x√(1+x²)+ln(x+√(1+x²)))+C
如图所示
拓展资料:
原函数
原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
资料参考:原函数百度百科
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询