隙积术的沈括作品

 我来答
萌小殇9020
2016-06-04 · 超过63用户采纳过TA的回答
知道答主
回答量:187
采纳率:0%
帮助的人:142万
展开全部

①积尺:在本文中泛指体积,也就是“立方尺”的意思。积:数学名词,两个或多个数相乘的结果称为这些数的积。在古代算学书籍里常借用长度单位名称来兼表面积单位或者体积单位,因此,“积尺”在古代既可以表示“平方尺”,也可以表示“立方尺”。
②刍萌:长方楔形状,其底面为长方形,两个侧面为梯形,也称为刍甍(hōnɡ)。
③鳖臑:一种锥体,底面为直角三角形且有一棱与底面垂直。
④阳马:四棱锥,有时指底面为长方形且有一棱与底面垂直的锥体。
⑤立方:文中指正方体。
⑥以直高乘之:用梯形面的垂直高相乘,文中指用上句中所得的数值(梯形的上下宽相加除以二)与高相乘。至此,实际上就得到了这个梯形的面积,也为下一步乘以长度得到物体的体积作了准备。
⑦罂:古代一种腹大口小的陶制容器。
⑧别列:文中指另外计算。
⑨重列:另外列出。
⑩会圆之术:会圆术,沈括所创的一种计算圆弓形弧长的近似方法,其近似公式为C=a+h2r×6,其中r为半径,h为矢高,a为弦长。沈括并未给出这一公式的推导,它很可能与《九章算术》中“弧田术”有着某种密切的关系。
别:另,另外。古代无“另”字,用“另”的地方常写作“别”。
各自乘:文中指将弦、股各自平方。
再割亦如之:再次切割也如此类推。
减去已割之弧,则再割之弧也:(用总的弧长)减去已割部分的弧长,就是再切割之田的弧长了。
步:古代计量单位,一步为五尺。
造微之术:比较精确的计算方法。
志:记,记述。 《梦溪笔谈》包括《笔谈》、《补笔谈》、《续笔谈》三部分。《笔谈》二十六卷,分为十七门,依次为“故事、辩证、乐律、象数、人事、官政、机智、艺文、书画、技艺、器用、神奇、异事、谬误、讥谑、杂志、药议”。《补笔谈》三卷,包括上述内容中十一门。《续笔谈》一卷,不分门。全书共六百零九条(不同版本稍有出入),内容涉及天文、数学、物理、化学、生物、地质、地理、气象、医药、农学、工程技术、文学、史事、音乐和美术等。在这些条目中,属于人文科学例如人类学、考古学、语言学、音乐等方面的,约占全部条目的18%;属于自然科学方面的,约占总数的36%,其余的则为人事资料、军事、法律及杂闻轶事等约占全书的46%。
就性质而言,《梦溪笔谈》属于笔记类。从内容上说,它以多于三分之一的篇幅记述并阐发自然科学知识,这在笔记类著述中是少见的。
《梦溪笔谈》详细记载了劳动人民在科学技术方面的卓越贡献和他自己的研究成果,反映了我国古代特别是北宋时期自然科学达到的辉煌成就。 《隙积术》选自《沈括·梦溪笔谈·技艺》
沈括北宋科学家、改革家。晚年以平生见闻,在镇江梦溪园撰写了笔记体巨著《梦溪笔谈》。一位非常博学多才、成就显著的科学家,我国历史上最卓越的科学家之一。精通天文、数学、物理学、化学、地质学,气象学、地理学、农学和医学;他还是卓越的工程师、出色的外交家。
沈括的科学成就是多方面的。他精研天文,所提倡的新历法,与今天的阳历相似。在物理学方面,他记录了指南针原理及多种制作法;发现地磁偏角的存在,比欧洲早了四百多年;又曾阐述凹面镜成像的原理;还对共振等规律加以研究。在数学方面,他创立「隙积术」(二阶等差级数的求和法)、「会圆术」(已知圆的直径和弓形的高,求弓形的弦和弧长的方法)。在地质学方面,他对冲积平原形成、水的侵蚀作用等,都有研究,并首先提出石油的命名。医学方面,对于有效的药方,多有记录,并有多部医学著作。此外,他对当时科学发展和生产技术的情况,如毕升发明活字印刷术、金属冶炼的方法等,皆详为记录。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式