f'x(x, y)是什么意思?

 我来答
暴躁的鹤h
高粉答主

2023-06-29 · 每个回答都超有意思的
知道小有建树答主
回答量:425
采纳率:100%
帮助的人:11.6万
展开全部

f'x(x,y)=2xy/(x^2+y^2)-2x^3y/(x^2+y^2)^2,f'y(x,y)=x^2/(x^2+y^2)-2x^2y^2/(x^2+y^2)^2

注意f(x,0)=f(0,y)=0,对不等于0的x,y成立。按定义可求得f在(0,0)的两个偏导数都等于0。对(x,y)异于原点的点。

在一元函数中,导数就是函数的变化率。对于二元函数的“变化率”,由于自变量多了一个,情况就要复杂的多。

在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般来说是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。

偏导数的表示符号为:∂。偏导数反映的是函数沿坐标轴正方向的变化率。

扩展资料:

x方向的偏导

设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数。

实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。

y方向的偏导

同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f'y(x0,y0)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式