利用因式分解法探究(1-1/2²)(1-1/3²)(1-/4²)...(1-1/n²)的值
2个回答
2012-01-30 · 知道合伙人教育行家
关注
展开全部
(1-1/2²)(1-1/3²)(1-/4²)...(1-1/n²)
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4) *......*(1-1/n)(1+1/n)
= 1/2*3/2*2/3*4/3*3/4*5/4*......*(n-1)/n*(n+1)/n
= 1/2*(n+1)/n
= (n+1)/(2n)
x²+2x+1+y²-8y+16=0
(x+1)^2+(y-4)^2=0
x=-1,y=4
y/x=4/(-1)=-4
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4) *......*(1-1/n)(1+1/n)
= 1/2*3/2*2/3*4/3*3/4*5/4*......*(n-1)/n*(n+1)/n
= 1/2*(n+1)/n
= (n+1)/(2n)
x²+2x+1+y²-8y+16=0
(x+1)^2+(y-4)^2=0
x=-1,y=4
y/x=4/(-1)=-4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询