趣味数学题10道,难点。不要简单。
1.在河的东岸有三只老虎、三头牛,和一条船,它们准备过河。若这条船同时只能乘载两个(可以是两只老虎、两头牛或一只老虎和一头牛),且只有一只老虎和一头牛会滑船。无论在任何地方,只要老虎的数目比牛的数目多,老虎就会把牛吃掉,请你设计个方案,使这群动物安全渡到河西岸。(注:只能让那只会滑船的虎或牛当船夫,除了滑船的,就只能再坐一虎或一牛了。)
2.现有大小两个正方形的纸片,试通过合适的方法剪切,并拼接成一个大正方形.(纸不能有剩余)
3.从昨天午夜(0:00时)到今天的上午十点整这十个小时内,时针与分针共成了几次直角?
4.有6X6的网格(即一个网格有六行六列),试把从1至36的自然数分别填入网格中,使每横行、竖行和斜行(即对角线)每六个数的和都相等.
5.⊿ABC中,AB=BC,且∠ABC=100°,点E在AB上,点D在AC上,且CE平分∠ACB,∠CBD=20°.
试求:∠CED的度数.
6.⊿ABC中,AB=AC,∠A=20°.D为AB上一点,E为AC上一点,试求:∠DEB的度数.
7.已知圆O(点O为圆心),试只用圆规把这个圆分为四等份.
8.现有一个没有圆心的圆,试只用圆规找出这个圆的圆心.(注:只用圆规)
9.已知一个直角三角形三边的长都是自然数,且一直角边为12,试求这个三角形的周长.
10.如图,有两个正方形,请指导每个正方形分成两块,两个正方形共四块,使这四块的形状和大小都相同,并且每一块中都有A、B、C、D四个字母.
一.人带猫、鸡、米过河,船除需要人划外,至少能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡,鸡要吃米。试设计一个安全过河方案,并使渡船次数尽量减少。
答案:
1 带鸡过去 空手回来
2 带猫过去 带鸡回来
3 带米过去 空手回来
4 带鸡过去
二.甲乙两个长方形,它们的周长相等,甲的长与宽的比是3:2,乙的长与宽的比是3:5,那么甲乙的面积是多少?
答案:
甲长为24宽为16,乙长为15,宽为25。
甲面积为384,乙面积为375。答案不唯一。
三.一块合金中铜和锌的比是3:2,现在加6克锌,共得锌的合金36克,新的合金中铜和锌的比是多少?
答案:
铜锌是1:1
4有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背会家,
每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香
蕉?
25根。
先背50根到25米处,这时,吃了25根,还有25根,放下。回头再背剩下的50根,走到25米处时,又吃了25根,还有25根。再拿起地上的25根,一共50根,继续往家走,一共25米,要先生、P先生、Q先生他们知道桌子的 抽屉里有16张扑克牌:红桃A、Q、4 黑桃J、8、4、2、7、3 草花K、Q、5、4、6 方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉 P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q 先生:你们能从已知的点数或花色中推知这张牌是什么牌吗? 于是,S先生听到如下的对话:
P先生:我不知道这张牌。
Q先生:我知道你不知道这张牌。
P先生:现在我知道这张牌了。
Q先生:我也知道了。
听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。
请问:这张牌是什么牌? 。
1、问5条直线最多将平面分为多少份?
2、太阳落下西山坡,鸭儿嘎嘎要进窝。四分之一岸前走,一半的一半随水波;身后还跟八只鸭,我家鸭子共几多?
3、 9棵树种10行,每行3棵,问怎样种?
4、数学谜语:(“/”是分数线)
3/4的倒数 7/8
1/100 1/2
3.4 1的任何次方
以上每条打一成语。
5、一个数,去掉百分号后比原数增加了0.4455,原数是多少?
6、甲、乙、丙三人投资55万元办一个商店。甲投资总数的1/5,余下的由乙、丙承担,且乙比丙多投资20%。乙投资多少万元?
7、把绳子三折来量,井外余4米;把绳子四折来量,井外余1米。求井深和绳子各是多少?
8、一筐苹果分给甲、乙、丙。甲分得全部苹果的1/5加5个苹果,乙分得全部苹果的1/4加7个苹果,丙分得余下苹果的一半,最后剩下的是一筐苹果的1/8,求这筐苹果有多少个?
9、某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半少1人。三个车间各有多少人?
10、 有人用车把米从甲地运往乙地,装米的重车日行50千米,空车日行70千米,5日往返三次。甲乙两地相距多少千米?
11、兄弟二人三年后的年龄和是26岁,弟弟今年的年龄恰好是兄弟二人年龄差的2倍。问,3年后兄弟二人各几岁?
第三组
1 有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背会家,
每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香
蕉?
25根。
2 先背50根到25米处,这时,吃了25根,还有25根,放下。回头再背剩下的50根,问5条直线最多将平面分为多少份?
3、太阳落下西山坡,鸭儿嘎嘎要进窝。四分之一岸前走,一半的一半随水波;身后还跟八只鸭,我家鸭子共几多?
4、 9棵树种10行,每行3棵,问怎样种?
5、数学谜语:(“/”是分数线)
3/4的倒数 7/8
1/100 1/2
6.4 1的任何次方
以上每条打一成语。
7、一个数,去掉百分号后比原数增加了0.4455,原数是多少?
8、甲、乙、丙三人投资55万元办一个商店。甲投资总数的1/5,余下的由乙、丙承担,且乙比丙多投资20%。乙投资多少万元?
9、把绳子三折来量,井外余4米;把绳子四折来量,井外余1米。求井深和绳子各是多少?
10、一筐苹果分给甲、乙、丙。甲分得全部苹果的1/5加5个苹果,乙分得全部苹果的1/4加7个苹果,丙分得余下苹果的一半,最后剩下的是一筐苹果的1/8,求这筐苹果有多少个?
11、某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半少1人。三个车间各有多少人?
12、 有人用车把米从甲地运往乙地,装米的重车日行50千米,空车日行70千米,5日往返三次。甲乙两地相距多少千米?
13、兄弟二人三年后的年龄和是26岁,弟弟今年的年龄恰好是兄弟二人年龄差的2倍。问,3年后兄弟二人各几岁?走到25米处时,又吃了25根,还有25根。再拿起地上的25根,一共50根,继续往家走,一共25米,要吃25根,还剩25根到家。
14 把一张纸裹在一支粉笔上,再用刀斜着把粉笔切断,请问把纸展开后断边为什么形状?
答案:正弦曲线
有十筐苹果,每筐里有十个,共
100个,每筐里苹果的重量都是一样,其中有九筐每个苹果的重量都是1斤,另一筐中每个苹果的重量都是0.9斤,但是外表完全一样,用眼看或用手摸无法分辨。现在要你用一台普通的大秤一次把这筐重量轻的找出来。
☆ 2.砝码
用天平称量物体的重量时,总少不了砝码。用一克、二克、四克、八克……的方法设置砝码,一般人都能想到,但这种方法需要的砝码数量太多,实际完全可以用得少一些。请你重新设计一个方案,只用四个砝码就能用天平称量一至四十克的全部整数克的物体的重量。
3. 招侦察员
某部欲招收一名侦察员,决定先进行考试。考试的方法是:凡是参加报考的人都关在一间条件较好的房间里,每天有人按时送水送饭,门口有专人看守。谁先从房间里出去,
考试就算过关。有人说头疼要去医院,守门人请来了医生;有的说母亲病重,要回去照顾,守门人用电话联系母亲正在上班。其他人也提了不少理由,守门人就是不让他们出去。最后有个人对守门人说了一句话,守门人就放他出去了。这个人说的是什么?
☆☆ 4. 称零件
有13个零件,外表完全一样,但有一个是不合格品,其重量和其它的不同,且轻重不知。请你用天平称3次,把它找出来(此题难度较大,只要能做出来,便说明智力非凡。时间不限)。
5. 清理垃圾
有一堆垃圾,规定要由张王李三户人家清理。张户因外出没能参加,留下9元钱做代劳费。王户上午起早干了5小时,李户下午接着干了4小时刚好干完。问王户和李户
应怎样分配这9元钱?
☆ 6. 最后剩下谁
1~50
号运动员按顺序排成一排。教练下令:“单数运动员出列!”剩下的运动员重新排队编号。教练又下令:“单数运动员出列!”如此下去,最后只剩下一个人,他是几号运动员?如果教练下的令是“双数运动员出列!”最后剩下的又是谁?
7. 九死一生
古时一位农民被人诬陷,农民据理力争,县官因已经接受别人的贿赂,不肯放人,又找不到理由,就出了个坏主意。叫人拿来十张纸条,对农民说:“这里有十张纸条,其中有九张写的‘死’,
一张写的‘生’,你摸一张,如果是‘生’,立即放你回去,如果是‘死’,就怪你命不好,怨不得别人。”聪明的农民早已猜到纸条上写的都是“死”,无论抓哪一张都一样。于是他想了个巧妙的办法,结果死里逃生了。你知道他想的什么办法吗?
8. 死刑犯
一死刑犯就要执行。行刑官对死刑犯说:“你知道我将怎样处决你吗?猜对了,我可以让你死得好受些,给你吃个枪子。要是你猜错了,那就对不起了,请你尝尝上绞刑架的滋味。”行刑官想:“反正我说了算,说你对你就对,说你错你就错”没想到由于死刑犯聪明的回答,使得行刑官无法执行死刑,这个死刑犯绝处逢生。这个死刑犯是怎样回答的?
9. 海边案件
这是发生在海边的案件。
一天早晨,张某的妻子还未起床,忽听一阵急促的敲门声,门外有人喊:“大嫂大嫂,大哥在家吗?”张氏听到喊声,开门一看,是准备同丈夫合伙外出做生意的李某。忙答道:“他昨天晚上就没回来。”然后急忙向附近的派出所报了案。经调查,张某已被人暗害。派出所人员详细询问了事情的经过后,立即将李某逮捕。开始李某极力否认,但最后不得不低头认罪。派出所人员是根据什么认定是李某做的案呢?
10. 上楼
我上班的办公楼和我居住的家属楼都是6层楼,而我工作和居住的楼层均在3层。于是我想:我每天所爬的台阶数是家住6楼,工作也在6楼的同事的几分之几呢?
你抄别人的吗?
答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道
2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?
答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.
3、 一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?
答案
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。
4、 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雄、兔各几何?
原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。
设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。
5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。
6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=<x<=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。
7.过桥 今有a b c d 四人在晚上都要从桥的左边到右边。此桥一次最多只能走两人,而且只有一支手电筒,过桥是一定要用手电筒。四人过桥最快所需时间如下为:a 2 分;b 3 分;c 8 分;d 10分。走的快的人要等走的慢的人,请问如何的走法才能在 21 分 让所有的人都过桥?
先是a和b一起过桥,然后将b留在对岸,a独自返回。a返回后将手电筒交给c和d,让c和d一起过桥,c和d到达对岸后,将手电筒交给b,让b将手电筒带回,最后a和b再次一起过桥。则所需时间为:3+2+10+3+3=21分钟。
8. 死刑犯
一死刑犯就要执行。行刑官对死刑犯说:“你知道我将怎样处决你吗?猜对了,我可以让你死得好受些,给你吃个枪子。要是你猜错了,那就对不起了,请你尝尝上绞刑架的滋味。”行刑官想:“反正我说了算,说你对你就对,说你错你就错”没想到由于死刑犯聪明的回答,使得行刑官无法执行死刑,这个死刑犯绝处逢生。这个死刑犯是怎样回答的?
9. 海边案件
这是发生在海边的案件。
一天早晨,张某的妻子还未起床,忽听一阵急促的敲门声,门外有人喊:“大嫂大嫂,大哥在家吗?”张氏听到喊声,开门一看,是准备同丈夫合伙外出做生意的李某。忙答道:“他昨天晚上就没回来。”然后急忙向附近的派出所报了案。经调查,张某已被人暗害。派出所人员详细询问了事情的经过后,立即将李某逮捕。开始李某极力否认,但最后不得不低头认罪。派出所人员是根据什么认定是李某做的案呢?
10. 上楼
我上班的办公楼和我居住的家属楼都是6层楼,而我工作和居住的楼层均在3层。于是我想:我每天所爬的台阶数是家住6楼,工作也在6楼的同事的几分之几呢?