周长相等的长方形,正方形和圆,哪个面积最小?为什么
展开全部
长方形的面积最小。
解:设周长为x
正方形面积和长方形面积的比较,早有定论,在周长相等的情况下,正方型面积大于长方形面积。
下面主要看一下圆形面积与正方型面积的比较。
圆形的面积是:π(x/2π)^2=(x^2)/(4π)
正方形的面积是:(x/4)^2=(x^2)/16
圆形面积/正方型面积=[(x^2)/(4π)]/[(x^2)/16]=[(x^2)/(4π)][16/(x^2)]=4/π>1
即:圆形面积/正方型面积>1
因此:圆形面积>正方型面积
所以,长方形面积最小。
解:设周长为x
正方形面积和长方形面积的比较,早有定论,在周长相等的情况下,正方型面积大于长方形面积。
下面主要看一下圆形面积与正方型面积的比较。
圆形的面积是:π(x/2π)^2=(x^2)/(4π)
正方形的面积是:(x/4)^2=(x^2)/16
圆形面积/正方型面积=[(x^2)/(4π)]/[(x^2)/16]=[(x^2)/(4π)][16/(x^2)]=4/π>1
即:圆形面积/正方型面积>1
因此:圆形面积>正方型面积
所以,长方形面积最小。
展开全部
圆的面积最大。
分析:长方形的面积为:长×宽、周zhi长为2×(长+宽);正方形的面积为:边长的平方、周长为4×变长;圆的面积为π×半径的平方、周长为2π×半径。
现设周长为单位1,那么长方形的话,长+宽=1/2,如果长是1/3,那么宽则是1/6,面积为1/18,而正方形的话,变长为1/4,面积为1/16。可以证明相同周长下,正方形的面积总会比长方形的面积大。
最后比较圆与正方形的面积,同样是利用单位1。圆的半径是1/(2π),那么面积是1/(4π),正方形的面积上面已算为1/16,因为知道4π小于16,作为分母,因此1/(4π)大于1/16。
扩展资料:
设长方形的长宽分别为A,B;正方形边长为C。
则A+B=2C,且A≠B。
两边同时平方得:
4CC=AA+4AB+BB-2AB。
整理得:
4CC-4AB=AA+BB-2AB=(A-B)(A-B)。
因为(A-B)(A-B)≥0。
即4CC-4AB≥0。
CC-AB≥0。
因为A≠B,则CC-AB>0。
而CC为正方形的面积,AB为长方形的面积。
因此正方形的面积大于长方形的面积。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
长方形的面积最小。
解:设周长为x
圆形面积与正方型面积的比较:
圆形的面积是:π(x/2π)^2=(x^2)/(4π)
正方形的面积是:(x/4)^2=(x^2)/16
圆形面积/正方型面积=[(x^2)/(4π)]/[(x^2)/16]=[(x^2)/(4π)][16/(x^2)]=4/π>1
即:圆形面积/正方型面积>1
因此:圆形面积>正方型面积
所以,长方形面积最小。
答:长方形面积最小
选我啦
解:设周长为x
圆形面积与正方型面积的比较:
圆形的面积是:π(x/2π)^2=(x^2)/(4π)
正方形的面积是:(x/4)^2=(x^2)/16
圆形面积/正方型面积=[(x^2)/(4π)]/[(x^2)/16]=[(x^2)/(4π)][16/(x^2)]=4/π>1
即:圆形面积/正方型面积>1
因此:圆形面积>正方型面积
所以,长方形面积最小。
答:长方形面积最小
选我啦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
圆形最大,长方形最小
设周长为X
圆面积为π(x/2π)^2=x^2/4π
正方形边长为x/4
面积x^2/16
长方形长宽为(x/4+a)和(x/4-a)
面积为(x/4-a)×(x/4+a)=x^2/16-a^2
x^2/4π > x^2/16 > x^2/16-a^2
设周长为X
圆面积为π(x/2π)^2=x^2/4π
正方形边长为x/4
面积x^2/16
长方形长宽为(x/4+a)和(x/4-a)
面积为(x/4-a)×(x/4+a)=x^2/16-a^2
x^2/4π > x^2/16 > x^2/16-a^2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
圆面积最大
长方形面积最小
为了浅显起见,我们假设周长都是16,则圆的面积为3.14*(16/6.28)*(16/6.28)=20.38,正方形面积为16,长方形我们取长为5宽为3 ,面积为15,所以圆面积最大,长方形面积最小.
长方形面积最小
为了浅显起见,我们假设周长都是16,则圆的面积为3.14*(16/6.28)*(16/6.28)=20.38,正方形面积为16,长方形我们取长为5宽为3 ,面积为15,所以圆面积最大,长方形面积最小.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询