英文数学题,求大神解答!! 5
展开全部
画两个线段 KL, MN, 它们在点 O 互相平分。在 KN 上标记一个点P, Q是PO 和 ML 的交点。证明 O 是 PQ 的中点 (首先列出已知条件和需要证明的结论)
given: KO = OL; MO = ON; P, O, Q on the same straight line
to be proved: PO=OQ
consider the 2 triangle KON and LOM:
KO = OL
angle KON = angle LOM
ON = OM
the 2 triangles KON and LOM are congruent triangles (SAS)
angle KNO = angle LMO
ON = OM
angle PON = angle QOM
the 2 triangle PON and QOM are congruent triangles (ASA)
so, PO = QO
q.e.d.
given: KO = OL; MO = ON; P, O, Q on the same straight line
to be proved: PO=OQ
consider the 2 triangle KON and LOM:
KO = OL
angle KON = angle LOM
ON = OM
the 2 triangles KON and LOM are congruent triangles (SAS)
angle KNO = angle LMO
ON = OM
angle PON = angle QOM
the 2 triangle PON and QOM are congruent triangles (ASA)
so, PO = QO
q.e.d.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询