已知抛物线y=ax平方与直线y=2x-3相交于点(1,b),

已知抛物线y=ax的平方与直线y=2x-3相交于点(1,b),求:(1)抛物线的解析式;(2)抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积。... 已知抛物线y=ax的平方与直线y=2x-3相交于点(1,b),求:(1)抛物线的解析式;(2)抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积。 展开
百度网友dd1905164
2012-01-30 · TA获得超过5178个赞
知道小有建树答主
回答量:974
采纳率:0%
帮助的人:375万
展开全部
1)
因为A点的横坐标为1,把x=1代入y=2x-3得y=-1
所以A点坐标为(1,-1)
把A(1.-1)代入y=ax²得a=-1 即抛物线解析式为y=-x²
2)
联立y=-2
y=-x²
解得x1=√2,y1=-2;x2=-√2,y=-2
抛物线的顶点是(0,0)
此三角形是关于y轴对称的等腰三角形
所以两点间距离为底边长2√2
高为2
所以三角形面积为2√2
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
lichymk
2012-01-30 · TA获得超过140个赞
知道答主
回答量:120
采纳率:0%
帮助的人:81.3万
展开全部
(1)y_1=ax^2;y_2=2x-3,
y_2经过点(1,b),所以b=-1
又因为y_1 、y_2相交于点(1,b)
因此a=-1
所以抛物线的解析式为y=-x^2;
(2)令y=-x^2=-2
所以x=±√2,
所以所围成三角形的面积为s=1/2*2√2*2=2√2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式