如图所示,过点F(0,1)的直线y=kx+b与抛物线 y=1/4x^2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2
如图所示,过点F(0,1)的直线y=kx+b与抛物线y=1/4x^2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2>0).对于过点F的任意直线MN,是否存...
如图所示,过点F(0,1)的直线y=kx+b与抛物线 y=1/4x^2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2>0).对于过点F的任意直线MN,是否存在一条定直线 m,使m与以MN为直径的圆相切.如果有,请求出这条直线m的解析式;如果没有,请说明理由.
展开
展开全部
直线y=kx+b过点F(0,1),所以b=1
直线与抛物线相交于M、N两点,所以kx+1=1/4*(x^2)为x1,x2必需满足的方程,于是知
x1+x2=4k
x2-x1=4((1+k^2)^(1/2))
所以MN中点坐标为(2k,2k+1),以MN为直径的动圆直径为4(1+k^2),即
动圆圆心为(2k,2k+1),半径为2(1+k^2),因而知道动圆半径与动圆圆心坐标的变化不成同一比例(半径添加快于圆心挪动,因而k添加时使得动圆将原来的切点包括在新圆的外部),因而不存在定直线m与动圆恒相切
复杂推理,当k为无量大时,MN退化为原点(0,0),动圆半径为0,因而m必需过原点;
当k=0时,动圆圆心为(0,1),半径为2;
当k=1时,动圆圆心为(2,3),半径为4;关于k=0,k=1的两种状况,与动圆都相切的直线只有两条x=-2,y=-1,且均不经过原点,因而反证得m不存在
直线与抛物线相交于M、N两点,所以kx+1=1/4*(x^2)为x1,x2必需满足的方程,于是知
x1+x2=4k
x2-x1=4((1+k^2)^(1/2))
所以MN中点坐标为(2k,2k+1),以MN为直径的动圆直径为4(1+k^2),即
动圆圆心为(2k,2k+1),半径为2(1+k^2),因而知道动圆半径与动圆圆心坐标的变化不成同一比例(半径添加快于圆心挪动,因而k添加时使得动圆将原来的切点包括在新圆的外部),因而不存在定直线m与动圆恒相切
复杂推理,当k为无量大时,MN退化为原点(0,0),动圆半径为0,因而m必需过原点;
当k=0时,动圆圆心为(0,1),半径为2;
当k=1时,动圆圆心为(2,3),半径为4;关于k=0,k=1的两种状况,与动圆都相切的直线只有两条x=-2,y=-1,且均不经过原点,因而反证得m不存在
追问
这个答案网上已经有回答了,我也看过了,可觉得不对,所以抱歉了......我已经找到正确答案了。谢谢。
展开全部
如果F是焦点,那么这条直线应该是抛物线的准线,但此题的F不是焦点,所以作如下证明
证:如果MN平行X轴,那么MN=4,以MN为直径的圆的水平方向的切线:y=-1或y=3
如果MN转过一个角度,比如转到45度,那么此时的MN=8 中点(圆心)位于(2,3),切线仍为Y=-1
当K为任意值时:MN:y=kx+1 y=0.25x^2 x^2-4kx-4=0 MN^2=(x1-x2)^2+(Y1-Y2)^2
=(1+K^2)(X1-X2)^2=(1+k^2)(16k^2+16) MN=4(k^2+1) 以MN为直径的圆 R=2k^2+2
MN 中点 x中=(x1+x2)/2=4k/2=2k y中=kX中+1=2k^2+1
此时该圆的水平切线方程为:y=y中-R=-1
所以存在一条定直线 m,使m与以MN为直径的圆相切,切线方程为 y=-1
证:如果MN平行X轴,那么MN=4,以MN为直径的圆的水平方向的切线:y=-1或y=3
如果MN转过一个角度,比如转到45度,那么此时的MN=8 中点(圆心)位于(2,3),切线仍为Y=-1
当K为任意值时:MN:y=kx+1 y=0.25x^2 x^2-4kx-4=0 MN^2=(x1-x2)^2+(Y1-Y2)^2
=(1+K^2)(X1-X2)^2=(1+k^2)(16k^2+16) MN=4(k^2+1) 以MN为直径的圆 R=2k^2+2
MN 中点 x中=(x1+x2)/2=4k/2=2k y中=kX中+1=2k^2+1
此时该圆的水平切线方程为:y=y中-R=-1
所以存在一条定直线 m,使m与以MN为直径的圆相切,切线方程为 y=-1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询