对于在区间对[m,n]上有意义的两个函数f(x)和g(x),对任意x属于[m,n],均有|f(x)-g(x)|≤1那么我们称f(x)

那么我们称f(x)和g(x)在[a,b]上是接近的,y=x^2-3x+2与y=2x+3在[a,b]上是接近的否则称非接近,现在有二个函数f1(x)=㏒10(x-3a)与f... 那么我们称f(x)和g(x)在[a,b]上是接近的,y=x^2-3x+2与y=2x+3在[a,b]上是接近的否则称非接近,现在有二个函数f1(x)=㏒10(x-3a)与f2(x)=1/x-a(a>0,a≠1)给定区间[a+2,a+3],(1)若f1(x)与f2(x)在给定区间[a+2,a+3]上有意义,求a的取值范围(2)f1(x)与f2(x)在给定区间[a+2,a+3]上是否接近 展开
775482972
2012-02-01
知道答主
回答量:16
采纳率:0%
帮助的人:5.1万
展开全部
(1)要使f1(x)与f2(x)有意义,则有 {x-3a>0x-a>0a>0且a≠1
要使f1(x)与f2(x)在给定区间[a+2,a+3]上都有意义,等价于: {a+2>3aa>0且a≠1
所以0<a<1.
(2)f1(x)与f2(x)在给定区间[a+2,a+3]上是接近的, ⇔|f1(x)-f(x2)|≤1⇔|loga(x-3a)-loga1x-a|≤1⇔|loga[(x-3a)(x-a)]|≤1⇔a≤(x-2a)2-a2≤1a对于任意x∈[a+2,a+3]恒成立.
设h(x)=(x-2a)2-a2,x∈[a+2,a+3],
且其对称轴x=2a<2在区间[a+2,a+3]的左边, ⇔{a≤(h(x))min1a≤(h(x))max⇔{a≤h(a+2)1a≥h(a+3)⇔{a≤4-4a1a≥9-6a⇔{a≤45a≤9-5712或a≥9+5712⇔0<a≤9-5712,
所以,当 0<a≤9-5712时,f1(x)与f2(x)在给定区间[a+2,a+3]上是接近的;
当 9-5712<a<1时,f1(x)与f2(x)在给定区间[a+2,a+3]上是非接近的.
曹昱栋
2013-01-12 · TA获得超过143个赞
知道答主
回答量:101
采纳率:0%
帮助的人:25.6万
展开全部
解:(1)函数f(x)与g(x)在区间[a+2,a+3]上有意义,
必须满足
a+2-3a>0a+2-a>00<a,a≠1
⇒0<a<1
(2)假设存在实数a,使得函数f(x)与g(x)在区间[a+2,a+3]上是“友好”的,
则|f(x)-g(x)|=|loga(x2-4ax+3a2)|⇒|loga(x2-4ax+3a2)|≤1
即-1≤loga(x2-4ax+3a2)≤1(*)
因为a∈(0,1)⇒2a∈(0,2),而[a+2,a+3]在x=2a的右侧,
所以函数g(x)=loga(x2-4ax+3a2)在区间[a+2,a+3]上为减函数,从而
[g(x)]max=g(a+2)=loga(4-4a)[g(x)]min=g(a+3)=loga(9-6a)
于是不等式(*)成立的充要条件是
loga(4-4a)≤1loga(9-6a)≥-10<a<1
⇒0<a≤
9-57
12
因此,当0<a≤
9-57
12
时,函数f(x)与g(x)在区间[a+2,a+3]上是“友好”的;当1>a>
9-57
12 时,函数f(x)与g(x)在区间[a+2,a+3]上是不“友好”的.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式