解决当x→2时,y=x²→4, 问δ等于多少,使当/x-2/<δ时,/y-4/<0.001
y=x^2
/y-4/<0.001
/x^2-4/<0.001
-0.001<x^2-4<0.001
4-0.001<x^2<4+0.001
3.999<x^2<4.001
1.9997<x<2.0002or-2.0002<x<-1.9997
-0.0003<x-2<0.0002or -4.0002< x-2<-3.9997
(-0.0003,0.0002)or(-4.0002,-3.9997)
a>/x-2/,a>/x-2/max,
y=/x-2/,
令t=x-2
y=/t/
t:(-0.0003,0.0002)or(-4.0002,-3.9997)
=(-0.0003,0)u[0,0.0002)u(-4.0002,-3.9997)
当t(-0.0003,0)u(-4.0002,-3.9997)
在R上是减函数,tmin=-4.0002,ymax=-(-4.0002)=4.0002
时,t<0,y=-t,
t=-4.0002取不到,所以ymax=4.0002取不到,在t(-0.0003,0)上的值域为(0,0.0003),在(-4.0002,-3.9997)上的值域为(3.9997,4.0002)
y属于(0,0.0003)u[0,0.0002)u(3.9997,4.0002)=[0,0.0003)U(3.9997,4.0002)
y<4.0002
tmax=0,ymin=-0=0,t=0取不到,所以ymin=0取不到,y>ymin=0,y>0
2.t属于[0,0.0002),y=/t/=t
t=0.0002,ymax=0.0002,t=0.0002取不到,则ymax=0.0002取不到,y<0.0002
t=0,ymin=0,
y;[0,0.0003)U(3.9997,4.0002)
a>y恒成立,a>=4.0002
a的范围是[4.0002,+无穷)