展开全部
先证明x>0时,f(x)>1
首先,令y=-1/2,有f(x-1/2)=f(x)+f(-1/2)-1=f(x)-1,即f(x)=f(x-1/2)+1
然后令上式的x>0,则x-1/2>-1/2,f(x-1/2)>0,f(x)>1
故x>0时,f(x)>1得证.
最后再证明单调性
对于任意的x1<x2,有x2-x1>0,f(x2-x1)>1
则f(x2)=f(x1+(x2-x1))=f(x1)+f(x2-x1)-1>f(x1)+1-1=f(x1)
故f(x)单调递增.
首先,令y=-1/2,有f(x-1/2)=f(x)+f(-1/2)-1=f(x)-1,即f(x)=f(x-1/2)+1
然后令上式的x>0,则x-1/2>-1/2,f(x-1/2)>0,f(x)>1
故x>0时,f(x)>1得证.
最后再证明单调性
对于任意的x1<x2,有x2-x1>0,f(x2-x1)>1
则f(x2)=f(x1+(x2-x1))=f(x1)+f(x2-x1)-1>f(x1)+1-1=f(x1)
故f(x)单调递增.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询