f'(0)=0, f"'(0)=6?

 我来答
heanmeng
2023-07-26 · TA获得超过6749个赞
知道大有可为答主
回答量:3651
采纳率:94%
帮助的人:1527万
展开全部
解:∵lim(x->0)[f(x)/x^3]=1
∴f(0)=0
∵1=lim(x->0)[f(x)/x^3]=lim(x->0)[f'(x)/(3x^2)] (0/0型极限,应用罗比达法则)
∴f‘(0)=0
∵1=lim(x->0)[f'(x)/(3x^2)]=lim(x->0)[f"(x)/(6x)] (0/0型极限,应用罗比达法则)
∴f"(0)=0
∵1=lim(x->0)[f"(x)/(6x)]=lim(x->0)[f"'(x)/6] (0/0型极限,应用罗比达法则)
∴f"'(0)=6
故 f(0)=f'(0)=f"(0)=0,f"'(0)=6。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
意法半导体(中国)投资有限公司
2023-06-12 广告
STM32F103是一款高性能的嵌入式芯片,由意法半导体(STMicroelectronics)公司生产。它是STM32系列芯片之一,具有紧凑、低功耗、高性能等特点,被广泛应用于嵌入式系统中。STM32F103的主要特点包括:1. 集成了A... 点击进入详情页
本回答由意法半导体(中国)投资有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式