
3个回答
展开全部
2.y=(sinx+1)(cosx+1)=sinx*cosx+sinx+cosx+1
=[(sinx+cosx)^-1]/2 +(sinx+cosx)+1
=(1/2)(sinx+cosx)^ + (sinx+cosx) + 1/2
令t=sinx+cosx=√2sin(x+π/4),可得出t∈[-√2,√2]
于是:y=(1/2)t^+t+1/2
=(1/2)*(t+1)^
当t∈[-√2,√2]时,对称轴t=-1位于其中
∴tmin=0
当t=√2(即距离-1的距离更远的端点值)时:
tmax=(1/2)*(√2+1)^=3/2 +√2
其实他们的解题思路是一样的,都是先用公式变形,化成只含一三角函数名的式子,接着你懂的。
(要是看得不是很清楚,明天我写出来吧)
展开全部
F(x)=2(sinx)^2-(cosx)^2+2sinxcosx-1
= sin2x-3/2cos2x-1/2
=√13/2(sin2x*2/√13-3/√13*cos2x)-1/2
=√13/2sin(2x-arcsin(3/√13))-1/2
∴函数f(x)的值域为[-√13/2-1/2,√13/2-1/2]
F(x)=(sinx+1)(cosx+1)
=sinxcosx+sinx+cosx+1
=(sinx+cosx)^2/2+(sinx+cosx)+1/2
=(√2sin(x+π/4))^2/2+(√2sin(x+π/4))+1/2
√2sin(x+π/4)值域[-√2, √2]
∴函数f(x)的值域为[0, 3/2+√2]
补充说明:取一个周期的函数值:
X=2kπ-π, √2sin(x+π/4)=-1,F(x)=0
X=2kπ-3π/4, √2sin(x+π/4)=-√2,F(x)=3/2-√2
X=2kπ-π/2, √2sin(x+π/4)=-1,F(x)=0
X=2kπ-π/4, √2sin(x+π/4)=0,F(x)=1/2
X=2kπ, √2sin(x+π/4)=1,F(x)=2
X=2kπ+π/4, √2sin(x+π/4)=√2,F(x)=3/2+√2
X=2kπ+π/2, √2sin(x+π/4)=1,F(x)=2
X=2kπ+3π/4, √2sin(x+π/4)=0,F(x)=1/2
X=2kπ+π, √2sin(x+π/4)=-1,F(x)=0
= sin2x-3/2cos2x-1/2
=√13/2(sin2x*2/√13-3/√13*cos2x)-1/2
=√13/2sin(2x-arcsin(3/√13))-1/2
∴函数f(x)的值域为[-√13/2-1/2,√13/2-1/2]
F(x)=(sinx+1)(cosx+1)
=sinxcosx+sinx+cosx+1
=(sinx+cosx)^2/2+(sinx+cosx)+1/2
=(√2sin(x+π/4))^2/2+(√2sin(x+π/4))+1/2
√2sin(x+π/4)值域[-√2, √2]
∴函数f(x)的值域为[0, 3/2+√2]
补充说明:取一个周期的函数值:
X=2kπ-π, √2sin(x+π/4)=-1,F(x)=0
X=2kπ-3π/4, √2sin(x+π/4)=-√2,F(x)=3/2-√2
X=2kπ-π/2, √2sin(x+π/4)=-1,F(x)=0
X=2kπ-π/4, √2sin(x+π/4)=0,F(x)=1/2
X=2kπ, √2sin(x+π/4)=1,F(x)=2
X=2kπ+π/4, √2sin(x+π/4)=√2,F(x)=3/2+√2
X=2kπ+π/2, √2sin(x+π/4)=1,F(x)=2
X=2kπ+3π/4, √2sin(x+π/4)=0,F(x)=1/2
X=2kπ+π, √2sin(x+π/4)=-1,F(x)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、f(x)=3sin²x+sin2x-2=(3/2)[1-cos2x]+sin2x-2=[sin2x-(3/2)cos2x]-(3/2)
因sin2x-(3/2)cos2x∈[-(√13)/2,(√13)/2],则:f(x)∈[-(√13+3)/2,(√13-3)/2]
2、设:sinx-cosx=t,则:t∈[-√2,√2],且(sinx-cosx)²=t ====>>>> sinxcosx=(1-t²)/2:
f(x)=sinxcosx-(sinx-cosx)-1=(1/2)(1-t²)-t-1=-(1/2)[t+1]²,其中t∈[-√2,√2],则结合二次函数图像,有:f(x)∈[-(3+2√2)/2,0]
因sin2x-(3/2)cos2x∈[-(√13)/2,(√13)/2],则:f(x)∈[-(√13+3)/2,(√13-3)/2]
2、设:sinx-cosx=t,则:t∈[-√2,√2],且(sinx-cosx)²=t ====>>>> sinxcosx=(1-t²)/2:
f(x)=sinxcosx-(sinx-cosx)-1=(1/2)(1-t²)-t-1=-(1/2)[t+1]²,其中t∈[-√2,√2],则结合二次函数图像,有:f(x)∈[-(3+2√2)/2,0]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询