展开全部
1/a + 1/b + ab
=(a+b)/a + (a+b)/b +ab
=1+b/a+1+a/b+ab
=2+(b/a+a/b)+ab
=2+(b/a+4ab)+(a/b+4ab)-7ab
≥2+2*2b+2*2a-7ab
=6-7ab
≥6-7* 1/4=6-7/4=17/4
中间用到的2个不等式分别是x+y≥2√xy和(x+y)^2≥4xy(即-xy≥-1/4)
之所以不能像你说的那样用ab作为分母的分式求最小值,因为1/a+1/b+ab=(a+b)/ab+ab=1/ab+ab取得最小值的条件是ab=1但是a>0,b>0,a+b=1的题设前提下,ab不可能取得值1,所以这个不等式不能取等号,所以2不是其最小值。
顺便,一般看到这种题目都是用函数的单调性去做,不过貌似现在会碰见这种题目的人都是还没学函数单调性的人=。=
所以有个小诀窍:看取得最小值的的条件去凑式子,看见这个题目,首先就推测a=b=1/2取得最值,然后带几个值验证,果然还是a=b=1/2比较小,于是心里就有底了,如果用到的不等式等号成立条件不是a,b同时为1/2那肯定得不到正确的结果,所以我在解题过程中凑了个4ab就是为了让b/a=1=4ab.
=(a+b)/a + (a+b)/b +ab
=1+b/a+1+a/b+ab
=2+(b/a+a/b)+ab
=2+(b/a+4ab)+(a/b+4ab)-7ab
≥2+2*2b+2*2a-7ab
=6-7ab
≥6-7* 1/4=6-7/4=17/4
中间用到的2个不等式分别是x+y≥2√xy和(x+y)^2≥4xy(即-xy≥-1/4)
之所以不能像你说的那样用ab作为分母的分式求最小值,因为1/a+1/b+ab=(a+b)/ab+ab=1/ab+ab取得最小值的条件是ab=1但是a>0,b>0,a+b=1的题设前提下,ab不可能取得值1,所以这个不等式不能取等号,所以2不是其最小值。
顺便,一般看到这种题目都是用函数的单调性去做,不过貌似现在会碰见这种题目的人都是还没学函数单调性的人=。=
所以有个小诀窍:看取得最小值的的条件去凑式子,看见这个题目,首先就推测a=b=1/2取得最值,然后带几个值验证,果然还是a=b=1/2比较小,于是心里就有底了,如果用到的不等式等号成立条件不是a,b同时为1/2那肯定得不到正确的结果,所以我在解题过程中凑了个4ab就是为了让b/a=1=4ab.
追问
。。。。那如果没有猜出这题b/a=1=4ab. 如何做呢。。。
展开全部
a>0,b>0,且a+b=1
1/a+1/b
= (1/a+1/b)*1
= (1/a+1/b)*(a+b)
= 1+b/a+a/b+1
= 2 + {√(b/a)-√(a/b)}^2 + 2
= 4 + {√(b/a)-√(a/b)}^2 ≥4
最小值4
a+b≥2√ab
1/4≥ab
a>0,b>0,且a+b=1,则a分之一+b分之一+ab ≥4+1/4=17/4
1/a+1/b
= (1/a+1/b)*1
= (1/a+1/b)*(a+b)
= 1+b/a+a/b+1
= 2 + {√(b/a)-√(a/b)}^2 + 2
= 4 + {√(b/a)-√(a/b)}^2 ≥4
最小值4
a+b≥2√ab
1/4≥ab
a>0,b>0,且a+b=1,则a分之一+b分之一+ab ≥4+1/4=17/4
追问
那为什么不能将a分之一+b分之一+ab直接通分成ab作为分母的分式来做呢 那样做的话 最小值就是2呀
而且a+b≥2√ab
1/4≥ab 这一步 也不能说明ab的最小值是1/4啊 这是ab的最大值是1/4啊。。。
怎么回事。。。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我认为是根号二
1/a+1/b+ab通分后得1/(ab)+ab
因为上面这个式子平方以后一定是大于2的,又a>0,b>0,既ab>0,所以开根号后1/(ab)+ab>根号二
1/a+1/b+ab通分后得1/(ab)+ab
因为上面这个式子平方以后一定是大于2的,又a>0,b>0,既ab>0,所以开根号后1/(ab)+ab>根号二
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询