已知e1,e2,e3为空间的一个基底,且op=2e1-e2+3e3,oa=e1+2e2-e3,ob=-3e1+e2+2e3,oc=e1+e2+e3

1.p,a,b,c四点是否共面2.能否以{oa,ob,oc}作为空间的一个基底?若能,试表示向量op(要过程,谢谢)... 1.p,a,b,c四点是否共面
2.能否以{oa,ob,oc}作为空间的一个基底?若能,试表示向量op
(要过程,谢谢)
展开
球球汤
2012-01-31
知道答主
回答量:3
采纳率:0%
帮助的人:5.7万
展开全部
解:(1)假设四点共面,则存在实数x,y,z使 OP→=xOA→+yOB→+zOC→,
且x+y+z=1,
即2e1-e2+3e3=x(e1+2e2-e3)+y(-3e1+e2+2e3)+z(e1+e2-e3).(4分)
比较对应的系数,得一关于x,y,z的方程组
{x-3y+z=2
{2x+y+z=-1
{-x+2y-z=3
解得
{x=17
{y=-5
{z=-30
与x+y+z=1矛盾,故四点不共面;(6分)
(2)若向量 OA→, OB→, OC→共面,则存在实数m,n使 OA→=mOB→+nOC→,
同(1)可证,这不可能,
因此 {OA→,OB→,OC→}可以作为空间的一个基底,
令 OA→=a, OB→=b, OC→=c,
由e1+2e2-e3=a,-3e1+e2+2e3=b,e1+e2-e3=c联立得到方程组,
从中解得
{e1=3a-b-5c
{e2=a-c
{e2=4a-b-7c.(10分)
所以 OP→=17OA→-5OB→-30OC→.(12分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式