化简:根号[(1+cosx)/(1-cosx)]-根号[(1-cosx)/(1+cosx)] x第四象限

370116
高赞答主

2012-01-31 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
√[(1+cosx)/(1-cosx)]
=√[(1+cosx)(1-cosx)/(1-cosx)²]
=√[(1-cos²x)/(1-cosx)²]
=√[sin²x/(1-cosx)²]
=|sinx|/(1-cosx)
=-sinx/(1-cosx)

√[(1-cosx)/(1+cosx)]
=√[(1+cosx)(1-cosx)/(1+cosx)²]
=√[(1-cos²x)/(1+cosx)²]
=√[sin²x/(1+cosx)²]
=|sinx|/(1+cosx)
=-sinx/(1+cosx)
所以:
√[(1+cosx)/(1-cosx)] - √[(1-cosx)/(1+cosx)]
=-sinx/(1-cosx) +sinx/(1+cosx)
=-sinx·[1/(1-cosx)- 1/(1+cosx)]
=-sinx·[(1+cosx)-(1-cosx)]/(1-cos²x)
=-sinx·2cosx/sin²x
=-2cosx/sinx
=-2cotx
曾强芮
2012-01-31 · 超过12用户采纳过TA的回答
知道答主
回答量:126
采纳率:0%
帮助的人:50万
展开全部
-2tanx/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式