设双曲线x^2/a^2-y^2/b^2=1的左右焦点为F1,F2,P是双曲线右支上的一点

设双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点为F1,F2,P是双曲线右支上的一点,△PF1F2的内切圆与x轴切于点Q(1,0),且|F1Q|=4... 设双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点为F1,F2,P是双曲线右支上的一点,△PF1F2的内切圆与x轴切于点Q(1,0),且|F1Q|=4,求双曲线的方程。 展开
worldbl
2012-01-31 · TA获得超过3.3万个赞
知道大有可为答主
回答量:6885
采纳率:100%
帮助的人:3383万
展开全部
设内切圆与PF1切于A,与PF2切于B,则|PA|=|PB|,|F1A|=|F1Q|,|F2B|=|F2Q|
因为|F1Q|=|F1O|+|OQ|,所以|F1O|=|F1Q|-|OQ|=4-1=3,即c=3,从而|F2Q|=2
又|PF1|-|PF2|=2a
即(|PA|+|F1A|)-(|PB|+|F2B|)=2a
|F1Q|-|F2Q|=2a
4-2=2a,a=1
所以 b²=c²-a²=8
双曲线的方程为x² -y²/8=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式