arctanx的麦克劳林级数求解过程
arctanx=x-1/3*x^3+1/5*x^5-1/7*x^7+1/9*x^9+...+(-1)^(n+1)/(2n-1)*x^(2n-1)
使用条件:
麦克劳林公式无论什么条件下都能使用,关键是展开的项数不能少于最低要求。x的趋向是要求的极限决定的,与展开式无关。
注意是参与加减运算的两部分的极限必须都是存在的。这是由极限的四则混合运算规则决定的。
麦克劳林公式是泰勒公式的一种特殊形式。
麦克劳林简介
麦克劳林Maclaurin(1698-1746), 是18世纪英国最具有影响的数学家之一。1719年Maclaurin在访问伦敦时见到了Newton,从此便成为了Newton的门生。
1742年撰写名著《流数论》,是最早为Newton流数方法做出了系统逻辑阐述的著作。他以熟练的几何方法和穷竭法论证了流数学说,还把级数作为求积分的方法,并独立于Cauchy以几何形式给出了无穷级数收敛的积分判别法。他得到数学分析中著名的Maclaurin级数展开式,并用待定系数法给予证明。
他在代数学中的主要贡献是在《代数论》(1748,遗著)中,创立了用行列式的方法求解多个未知数联立线性方程组。但书中记叙法不太好,后来由另一位数学家Cramer又重新发现了这个法则,所以被称为Cramer法则。
……