过双曲线x^2/a^2-y^2/b^2=1的左焦点作圆x^2+y^2=a^2/4的切线,切点为E,延长FE交双曲线右支于点P

过双曲线x^2/a^2-y^2/b^2=1的左焦点作圆x^2+y^2=a^2/4的切线,切点为E,延长FE交双曲线右支于点P,若向量OE=1/2(向量OF+向量OP),则... 过双曲线x^2/a^2-y^2/b^2=1的左焦点作圆x^2+y^2=a^2/4的切线,切点为E,延长FE交双曲线右支于点P,若向量OE=1/2(向量OF+向量OP),则双曲线的离心率是_

答案是 根号10/2

求详细完整解答.
麻烦不要复制百度上的错误答案上来
展开
andyatong
2012-01-31 · TA获得超过161个赞
知道答主
回答量:23
采纳率:0%
帮助的人:22.3万
展开全部
因为向量OE=1/2(向量OF+向量OP),所以2OE=OF+OP,可得E是PF中点,且PF垂直OE
在三角形OFE中,由勾股定理得(1/2PF)^2+a^2/4=c^2
又|PF|-|PF'|=2a
所以(1/2*3a^2)+a^2/4=c^2
所以c^2/a^2=10/4
所以e=根号10/2
追问
(1/2*3a^2)哪来的
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式