一道初三数学题,跪求详细过程

如图,抛物线y=-5/4x²+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)(1)动点P在线段OC上从... 如图,抛物线y=-5/4x² +17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)
(1)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N。设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
(2)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否为菱形?请说明理由。

跪求详细过程
展开
v虎蝠v
2012-01-31 · TA获得超过4.7万个赞
知道大有可为答主
回答量:6758
采纳率:75%
帮助的人:3810万
展开全部
解:1).令x=0得y=1,因此A点的坐标为(0,1);x=3时y=-45/4+51/4+1=10/4=5/2,故B点的坐标
为(3,5/2);KAB=(5/2-1)/(3-0)=1/2,故AB所在直线的方程为y=(1/2)x+1.
2).S=-(5/4)t²+(17/4)t+1-[(1/2)a+1]=-(5/4)t²+(15/4)t=(5/4)(3-t)t,0≦t≦3.
3).要使BCMN为平行四边形只须CM∥BN,即只须KCM=KBN;KCM=(t/2+1)/(t-3);
KBN=(-5t²/4+17t/4+1-5/2)/(t-3)=(-5t²/4+17t/4-3/2)/(t-3);故得等式:
t/2+1=-5t²/4+17t/4-3/2,5t²/4-15t/4+5/2=0,即有t²-3t+2=(t-2)(t-1)=0,故得t₁=1;t₂=2;
即当t=1秒或2秒时BCMN是平行四边形。
t=1时,︱MN︱=-5/4+17/4+1-(1/2+1)=5/2,︱CM︱=√[(3-1)²+(3/2)²]=√(25/4)=5/2;
故︱MN︱=︱CM︱,所以BCMN是菱形。
t=2时,︱MN︱=-5+17/2+1-3/2=3,︱CM︱=√[(3-2)²+2²]=√5;
故︱MN︱≠︱CM︱,所以BCMN不是菱形。
http://zhidao.baidu.com/question/348614613.html
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式