什么是二阶导?

 我来答
西点屋kS
2023-07-30
知道答主
回答量:54
采纳率:0%
帮助的人:7947
展开全部
在微积分中,二阶导数是函数的导数的导数。对于函数f(x),它的一阶导数是f'(x),二阶导数可以通过对一阶导数再次求导得到,表示为f''(x)或者d²f/dx²。
二阶导数定义如下:
如果函数f(x)在某个区间内可导,那么它的二阶导数f''(x)定义为:
f''(x) = (d/dx)(f'(x))
也可以表示为:
f''(x) = d²f/dx²
二阶导数可以理解为函数曲线的曲率或弯曲程度。如果二阶导数大于0,表示函数曲线向上凸起,即函数呈现出凸的形状;如果二阶导数小于0,表示函数曲线向下凹陷,即函数呈现出凹的形状;如果二阶导数等于0,则函数曲线可能是平坦的或取极值点。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式