先化简,再求值:(1/x-1)-(2/x^2-1),其中x=-2 先化简,再求值:(x/x^2-1)[(x-1/x)-2],其中x=2
展开全部
(1/x-1)-(2/x^2-1)=(1/x-1)-(2/x^2-2)-1=(1/x-1)-2(1/x+1)(1/x-1)-1=(1/x-1)[1-2(1/x+1)]-1
=(1/x-1)(-2/x-1)-1 代入(-2/x-1)可得0 故整式结果为-1
(x/x^2-1)[(x-1/x)-2]=[(1-x)(x^2-1-2x)]/x^2=[(1-x)[(x-1)^2-2]]/x^2
代值x=2得-1*-1/4=1/4
=(1/x-1)(-2/x-1)-1 代入(-2/x-1)可得0 故整式结果为-1
(x/x^2-1)[(x-1/x)-2]=[(1-x)(x^2-1-2x)]/x^2=[(1-x)[(x-1)^2-2]]/x^2
代值x=2得-1*-1/4=1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1/x-1)-(2/x^2-1)
=(x+1)/[(x+1)(x-1)]-2/[(x+1)(x-1)]
=(x+1-2)/[(x+1)(x-1)]
=(x-1)/[(x+1)(x-1)]
=1/(x+1)
x=-2
(1/x-1)-(2/x^2-1)
=1/(-2+1)=-1
[x/(x^2-1)] {[(x-1)/x]-2}
={x/[(x+1)(x-1)]} [(x-2x-1)/x] 约去x
=-(x+1)/[(x+1)(x-1)]
=-1/(x-1)
=1/(1-x)
x=2
[x/(x^2-1)] {[(x-1)/x]-2}=1/(1-2)=-1
=(x+1)/[(x+1)(x-1)]-2/[(x+1)(x-1)]
=(x+1-2)/[(x+1)(x-1)]
=(x-1)/[(x+1)(x-1)]
=1/(x+1)
x=-2
(1/x-1)-(2/x^2-1)
=1/(-2+1)=-1
[x/(x^2-1)] {[(x-1)/x]-2}
={x/[(x+1)(x-1)]} [(x-2x-1)/x] 约去x
=-(x+1)/[(x+1)(x-1)]
=-1/(x-1)
=1/(1-x)
x=2
[x/(x^2-1)] {[(x-1)/x]-2}=1/(1-2)=-1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1,-3/2-(-1/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)1/x-2/x^2=-1
(2) -1/x-1=-1
(2) -1/x-1=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询