根号三在数轴上怎么表示? 图
可以根据直角三角形的相关性质画出根号三的长度。
根据直角三角形的勾股定理可以知道,两直角边的平方等于斜边的平方,当直角三角形的两条直角边分别为1和2时,第三条边即为√3,如图所示:
扩展资料:
勾股定理在中国古代被证明的记载:
公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”
意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。
参考资料来源:百度百科-勾股定理
1、在纵轴1处画一条水平线。
2、以O为圆心,以2为半径画圆,交水平线于点D,则OD为半径=2。
3、由D向横轴线垂线,交点C处的坐标即为根号3.
扩展资料:
作用
1、数轴能形象地表示数,横向数轴上的点和实数成一一对应,即每一个实数都可以用数轴上的一个点来表示.
2、比较实数大小,以0为中心,右边的数比左边的数大。
3、虚数也可以用垂直于横向数轴且同一原点的纵向数轴表示,这样就与横向数轴构成了复数平面。
4、用两根互相垂直且有同一原点的数轴可以构成平面直角坐标系;用三根互相垂直且有同一原点的数轴可以构成空间直角坐标系,以确定物体的位置。
数轴具有数的完备性,不仅能够表示有理数和无理数(合称实数),还能够表示虚数,同时还可以建立坐标系,构成了一个比较严密的数的系统
一,以点A为圆心,2个单位长为半径画弧,交Y轴于点E,
二。以点E为圆心,AE为半径画弧,交X轴于点B,
则 点B所表示的数就是根号3。