求下列定积分的过程
展开全部
(1)令t=1+x^(1/3),则x=(t-1)^3,dx=3(t-1)^2dt
原式=∫(1,2) 3(t-1)^2/tdt
=3∫(1,2) (t-2+1/t)dt
=3*(t^2/2-2t+ln|t|)|(1,2)
=3*(2-4+ln2-1/2+2)
=3ln2-3/2
(2)令t=√x-1,则x=(t+1)^2,dx=2(t+1)dt
原式=∫(1,2) (t+1)/t*2(t+1)dt
=2∫(1,2) (t+2+1/t)dt
=(t^2+4t+2ln|t|)|(1,2)
=4+8+2ln2-1-4
=7+2ln2
(3)令t=√(5-4x),则x=(5-t^2)/4,dx=-t/2dt
原式=∫(3,1) 1/t*(-t/2)dt
=(1/2)*∫(1,3)dt
=(t/2)|(1,3)
=3/2-1/2
=1
(4)令t=√(x+1),则x=t^2-1,dx=2tdt
原式=∫(1,2) (t^2-1)t*2tdt
=2∫(1,2) (t^4-t^2)dt
=[(2/5)*t^5-(2/3)*t^3]|(1,2)
=64/5-16/3-2/5+2/3
=62/5-14/3
=116/15
原式=∫(1,2) 3(t-1)^2/tdt
=3∫(1,2) (t-2+1/t)dt
=3*(t^2/2-2t+ln|t|)|(1,2)
=3*(2-4+ln2-1/2+2)
=3ln2-3/2
(2)令t=√x-1,则x=(t+1)^2,dx=2(t+1)dt
原式=∫(1,2) (t+1)/t*2(t+1)dt
=2∫(1,2) (t+2+1/t)dt
=(t^2+4t+2ln|t|)|(1,2)
=4+8+2ln2-1-4
=7+2ln2
(3)令t=√(5-4x),则x=(5-t^2)/4,dx=-t/2dt
原式=∫(3,1) 1/t*(-t/2)dt
=(1/2)*∫(1,3)dt
=(t/2)|(1,3)
=3/2-1/2
=1
(4)令t=√(x+1),则x=t^2-1,dx=2tdt
原式=∫(1,2) (t^2-1)t*2tdt
=2∫(1,2) (t^4-t^2)dt
=[(2/5)*t^5-(2/3)*t^3]|(1,2)
=64/5-16/3-2/5+2/3
=62/5-14/3
=116/15
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询