用洛比塔法则求极限 30
1个回答
展开全部
lim(1/x²-cot²x)=lim(1/x²-cos²x/sin²x)=lim(sin²x-x²cos²x)/(x²sin²x)
x→0
=lim(sinxcosx-x)/(xsin²x+x²sinxcosx)=lim(cosx-1)/(sin²x+xsinx)
x→0
=lim(cosx-1)/(sin²x+xsinx)=lim -sinx/(2sinxcosx+sinx+xcosx)
x→0
=lim -cosx/(2cosx+cosx+1)
x→0
=-1/4
x→0
=lim(sinxcosx-x)/(xsin²x+x²sinxcosx)=lim(cosx-1)/(sin²x+xsinx)
x→0
=lim(cosx-1)/(sin²x+xsinx)=lim -sinx/(2sinxcosx+sinx+xcosx)
x→0
=lim -cosx/(2cosx+cosx+1)
x→0
=-1/4
追问
答案是2/3
追答
lim(1/x²-cot²x)=lim(1/x²-cos²x/sin²x)=lim(1-cos²x)/x²
x→0
=lim sin²x/x²=1
x→0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询