ln(1+1/n)用泰勒公式怎么展开

 我来答
活宝上大夫
2017-04-17 · TA获得超过7491个赞
知道大有可为答主
回答量:5601
采纳率:0%
帮助的人:1104万
展开全部
令f(x)=ln(1+x),则
f(x)的k阶导数为fk(x)=(k-1)!(-1)^(k+1)/(1+x)^k; (k-1)的阶乘,乘以-1的k+1次方,除以(1+x)的k次方
f(x)=f(x0)+∑fk(x0)(x-x0)^k/k!(k=1,2,3……)
x0可取f(x)定义域内的任意数,根据需要选择.如x0=0,则上式为f(x)在x=0处的泰勒展开式.
fk(x0)可由前面的式子求得.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式