化简:sin²αsin²β+cos²αcos²β-½cos2αcos2β
2个回答
展开全部
sin²αsin²β+cos²αcos²β-(1/2)cos2αcos2β
=sin²αsin²β+cos²αcos²β-(1/2)(1-2sin²α)(1-2sin²β)
=sin²αsin²β+cos²αcos²β-(1/2)(1-2sin²α-2sin²β+4sin²αsin²β)
=sin²αsin²β+cos²αcos²β-2sin²αsin²β+sin²α+sin²β- 1/2
=cos²αcos²β-sin²αsin²β+sin²α+sin²β-1/2
=cos²αcos²β+sin²α(1-sin²β)+sin²β-1/2
=cos²αcos²β+sin²αcos²β+sin²β- 1/2
=(cos²α+sin²α)cos²β+sin²β-1/2
=cos²β+sin²β- 1/2
=1/2
=sin²αsin²β+cos²αcos²β-(1/2)(1-2sin²α)(1-2sin²β)
=sin²αsin²β+cos²αcos²β-(1/2)(1-2sin²α-2sin²β+4sin²αsin²β)
=sin²αsin²β+cos²αcos²β-2sin²αsin²β+sin²α+sin²β- 1/2
=cos²αcos²β-sin²αsin²β+sin²α+sin²β-1/2
=cos²αcos²β+sin²α(1-sin²β)+sin²β-1/2
=cos²αcos²β+sin²αcos²β+sin²β- 1/2
=(cos²α+sin²α)cos²β+sin²β-1/2
=cos²β+sin²β- 1/2
=1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询