已知sinα是方程5x²-7x-6=o的根,
求[sin(α+3π/2)sin(3π/2-α)tan²(2π-α)tan(π-α)]/[cos(π/2-α)cos(π/2+α)]的值...
求[sin(α+ 3π/2 )sin(3π/2 -α)tan²(2π-α)tan(π-α)] / [cos(π/2 -α)cos(π/2 +α)]的值
展开
1个回答
展开全部
解:sin(α+ 3π/2 )=-cosα
sin(3π/2 -α)=-cosα
tan(2π-α)=-tanα
tan(π-α)=-tanα
cos(π/2-α)=sinα
cos(π/2+α)=-sinα
原式=
[(cosα)^2*(-tanα)^3]/[-(sinα)^2]
=[(cosα)^2*(tanα)^3]/[(sinα)^2]
=tanα
5x²-7x-6=0
(5x+3)(x-2)=0
∵sinα∈[-1,1]
∴sinα=-3/5
cosα=±4/5
tanα=±3/4
答:原式=±3/4
sin(3π/2 -α)=-cosα
tan(2π-α)=-tanα
tan(π-α)=-tanα
cos(π/2-α)=sinα
cos(π/2+α)=-sinα
原式=
[(cosα)^2*(-tanα)^3]/[-(sinα)^2]
=[(cosα)^2*(tanα)^3]/[(sinα)^2]
=tanα
5x²-7x-6=0
(5x+3)(x-2)=0
∵sinα∈[-1,1]
∴sinα=-3/5
cosα=±4/5
tanα=±3/4
答:原式=±3/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询