
高一数学几何数学题,答案不是很理解、请高手帮忙解释一下
如图,在斜三棱柱ABC-A1B1C1中,∠A1AB=∠A1AC,AB=AC,A1A=A1B=a,侧面B1BCC1与底面ABC所成的二面角为120°,E、F分别是棱B1C1...
如图,在斜三棱柱ABC-A1B1C1中,∠A1AB=∠A1AC,AB=AC,A1A=A1B=a,侧面B1BCC1与底面ABC所成的二面角为120°,E、F分别是棱B1C1、A1A的中点
(Ⅰ)求A1A与底面ABC所成的角;
(Ⅱ)证明A1E∥平面B1FC;
(Ⅲ)求经过A1、A、B、C四点的球的体积.
解:(Ⅰ)过A1作A1H⊥平面ABC,垂足为H.
连接AH,并延长交BC于G,于是∠A1AH为A1A与底面ABC所成的角.
∵∠A1AB=∠A1AC,∴AG为∠BAC的平分线.
又∵AB=AC,∴AG⊥BC,且G为BC的中点.
因此,由三垂线定理A1A⊥BC.
∵A1A∥B1B,且EG∥B1B,∴EG⊥BC.
于是∠AGE为二面角A-BC-E的平面角,
即∠AGE.
由于四边形A1AGE为平行四边形,得∠A1AG=60°.
问:为什么“∵∠A1AB=∠A1AC,∴AG为∠BAC的平分线” 展开
(Ⅰ)求A1A与底面ABC所成的角;
(Ⅱ)证明A1E∥平面B1FC;
(Ⅲ)求经过A1、A、B、C四点的球的体积.
解:(Ⅰ)过A1作A1H⊥平面ABC,垂足为H.
连接AH,并延长交BC于G,于是∠A1AH为A1A与底面ABC所成的角.
∵∠A1AB=∠A1AC,∴AG为∠BAC的平分线.
又∵AB=AC,∴AG⊥BC,且G为BC的中点.
因此,由三垂线定理A1A⊥BC.
∵A1A∥B1B,且EG∥B1B,∴EG⊥BC.
于是∠AGE为二面角A-BC-E的平面角,
即∠AGE.
由于四边形A1AGE为平行四边形,得∠A1AG=60°.
问:为什么“∵∠A1AB=∠A1AC,∴AG为∠BAC的平分线” 展开
展开全部
解:(Ⅰ)过A1作A1H⊥平面ABC,垂足为H.
连接AH,并延长交BC于G,于是∠A1AH为A1A与底面ABC所成的角.
∵∠A1AB=∠A1AC,∴AG为∠BAC的平分线.
又∵AB=AC,∴AG⊥BC,且G为BC的中点.
因此,由三垂线定理A1A⊥BC.
∵A1A∥B1B,且EG∥B1B,∴EG⊥BC.
于是∠AGE为二面角A-BC-E的平面角,
即∠AGE.
由于四边形A1AGE为平行四边形,得∠A1AG=60°.
问:为什么“∵∠A1AB=∠A1AC,∴AG为∠BAC的平分线”
连接AH,并延长交BC于G,于是∠A1AH为A1A与底面ABC所成的角.
∵∠A1AB=∠A1AC,∴AG为∠BAC的平分线.
又∵AB=AC,∴AG⊥BC,且G为BC的中点.
因此,由三垂线定理A1A⊥BC.
∵A1A∥B1B,且EG∥B1B,∴EG⊥BC.
于是∠AGE为二面角A-BC-E的平面角,
即∠AGE.
由于四边形A1AGE为平行四边形,得∠A1AG=60°.
问:为什么“∵∠A1AB=∠A1AC,∴AG为∠BAC的平分线”
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵AB=AC,∠A1AB=∠A1AC,可证明三角形A1AB和A1AC全等
∴AG到AB,AC距离相等 根据定理,到角两边距离相等的点在角平分线上
∴AG为∠BAC的平分线
∴AG到AB,AC距离相等 根据定理,到角两边距离相等的点在角平分线上
∴AG为∠BAC的平分线
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你那里不懂,说出来,我帮你讲解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询